# Lecture 18 ## Chapter III Linear maps **Assumption: $U,V,W$ are vector spaces (over $\mathbb{F}$)** ### Duality 3F --- Review #### Theorem 3.128, 3.130 Let $V,W$ be a finite dimensional vector space, $T\in \mathscr{L}(V,W)$ a) $null\ T'=(range\ T)^0$, $dim (null\ T')=dim\ null\ T+dim\ W-dim\ V$ b) $range\ T'=(null\ T)^0$, $dim (range\ T')=dim (range\ T)$ c) dim(range\ T')= dim(range\ T) --- New materials #### Theorem 3.129, 3.131 Let $V,W$ be a finite dimensional vector space, $T\in \mathscr{L}(V,W)$ a) $T$ is injective $\iff T'$ is surjective b) $T$ is surjective $\iff T'$ is injective Proof: $T$ is injective $\iff null\ T=\{0\}\iff range\ T'=V'\iff T'$ surjective $T$ is surjective $\iff range\ T=W\iff null\ T'=0\iff T'$ injective #### Theorem 3.132 Let $V,W$ be a finite dimensional vector space, $T\in \mathscr{L}(V,W)$ Then $M(T')=(M(T))^\top$. Where the basis for $M(T)'$ are the dual basis to the ones for $M(T)$ #### Theorem 3.133 $col\ rank\ A=row\ rank\ A$ Proof: $col\ rank\ A=col\ rank\ (M(T))=dim\ range\ T=dim\ range\ T'=dim\ range\ T'=col\ rank\ (M(T'))=col\ rank\ (M(T)^\top)=row\ rank\ (M(T))$ ## Chapter V Eigenvalue and Eigenvectors ### Invariant Subspaces 5A Goal: Study maps in $\mathscr{L}(V)$ (linear operations) Question: Given $T\in \mathscr{L}(V)$ when can I restrict to $U\subseteq V$ such that $T\vert_U\in \mathscr{L}(U)$ #### Definition 5.2 Suppose $T\in \mathscr{L}(V)$ and $U\subseteq V$ a subspace is said to be invariant under $T$ if $Tu\in U,\forall u\in U$ Example: For any $T\in \mathscr{L}(V)$, the following are invariance subspaces. 1. $\{0\}$ 2. $V$ 3. $null\ T$, $v\in null\ T\implies Tv=0\in null\ T$ 4. $range\ T$, $v\in range\ T\subseteq V \implies Tv\in range\ T$ #### Definition 5.5 Suppose $T\in\mathscr{L}(V)$, then for $\lambda \in \mathbb{F}$ is an **eigenvalue** of $T$ if $\exists v\in V$ such that $v\neq 0$ and $Tv=\lambda v$. #### Definition 5.8 Suppose $T\in\mathscr{L}(V)$ and $\lambda \in \mathbb{F}$ is an eigenvalue of $T$. The $v\in V$ is an **eigenvector** of $T$ corresponding to $\lambda$ if $v\neq 0$ and $Tv=\lambda v$ Note: if $\lambda$ is an eigenvalue of $T$ and $v$ an eigenvector corresponding to $\lambda$, then $U=Span(V)$ is an invariant subspace. and $T\vert_U$ is multiplication by $\lambda$ #### Proposition 5.7 $V$ is finite dimensional $T\in \mathscr{L},\lambda\in \mathbb{F}$ then the following are equivalent: (TFAE) a) $\lambda$ is an eigenvalue b) $T-\lambda I$ is not injective c) $T-\lambda I$ is not surjective d) $T-\lambda I$ is not invertible Proof: (a)$\iff$ (b) $\lambda$ is an eigenvalue $\iff \exists v\in V$ such that $Tv=\lambda v\iff \exists v\in V, v\neq 0, (T-\lambda I)v=0$ Example: $T(x,y)=(-y,x)$ what are the eigenvalues of $T$. If $\mathbb{F}=\mathbb{R}$ rotation by $90\degree$, so no eigenvalues. what if $\mathbb{F}=\mathbb{C}$? we can solve the system $T(x,y)=\lambda (x,y),(-y,x)=\lambda (x,y)$ $$ -y=\lambda x \\ x=\lambda y $$ So $$ -1=\lambda ^2,\lambda =\plusmn i $$ when $\lambda =-i$, $v=(1,i)$, $\lambda=i$, $v=(1,-i)$