# Lecture 23 ## Chapter V Eigenvalue and Eigenvectors ### 5D Diagonalizable Operators #### Theorem 5.55 Suppose $V$ is a finite dimensional vector space and $T\in \mathscr{L}(V)$. let $\lambda_1,...,\lambda_m$ be the distinct eigenvalues of $T$, then the followings are equal: a) $T$ is diagonalizable b) $V$ has a basis of eigenvectors of $T$ c) $V=E(\lambda, T)\oplus....\oplus E(\lambda_m,T)$ d) $dim\ V= dim\ E(\lambda_1,T)+...+dim\ E(\lambda_m,T)$ ideas of Proof: $(a)\iff (b)$ look at $M(T)$' $(b)\iff (c)$ recall $E(\lambda_1,T)+...+E(\lambda_m,T)$ is always a distinct sum $(c)\iff (d)$ again $E(\lambda_1,T)+...+E(\lambda_m,T)$ is always a distinct sum Example: $T:\mathbb{R}^2\to\mathbb{R}^3$, $M(T)=\begin{pmatrix} 0&1&0\\ 0&0&1\\ 0&0&0 \end{pmatrix}$ Eigenvalues:[0], Eigenvectors $E(0,T)=null\ (T-0I)=Span\{(1,0,0)\}$ There are no basis of eigenvectors, $\mathbb{R}^3\neq E(0,T)$, $3\neq dim\ (E(0,T))=1$ #### Theorem 5.58 Suppose $V$ is a finite dimensional $T\in \mathscr{L}(v)$ and $T$ has $n=\dim $. distinct eigenvalues then T is diagonalizable. Proof: Let $\lambda_1,...,\lambda_n$ be the distinct elements of$T$.. = Then let $v_1,...,v_n$ be eigenvectors of $\lambda_1,...,\lambda_n$ in the same order. Note $v_1,...,v_n$ are eigenvectors for distinct eigenvectors by **Theorem 5.11** they are linearly independent thus they form a basis. So by **Theorem 5.55**, $T$ is diagonalizable. Example: $$ M(T)=\begin{pmatrix} 1& 4& 5 \\ 0&2&6\\ 0&0&3 \end{pmatrix} $$ is diagonalizable #### Theorem 5.62 Suppose $V$ finite dimensional $T\in \mathscr{L}(V)$. Then $T$ is diagonalizable if and only if the **minimal polynomial** is of the form $(z-\lambda_1)...(z-\lambda_m)$ for distinct $\lambda_1,...,\lambda_m\in\mathbb{F}$ Proof: $\Rightarrow$ Suppose $T$ is diagonalizable, let $\lambda_1,...,\lambda_m$ be the distinct eigenvalues of $T$. And let $v_1,...,v_n$ for $n=dim\ V$ be a basis of eigenvectors of $T$. We need to show $$ (T-\lambda_1I)...(T-\lambda_mI)=0 $$ Consider $(T-\lambda_1I)...(T-\lambda_mI)v_k=(T-\lambda_1I)...(T-\lambda_mI)$, suppose $Tv_k=\lambda_j v_k$. Then $(T-\lambda_1I)...(T-\lambda_mI)=0$ So $(T-\lambda_1I)...(T-\lambda_mI)=0\implies$ minimal polynomial divides $(z-\lambda_1)...(z-\lambda_m)$ so the minimal polynomial has distinct linear factors. $\Leftarrow$ Suppose $T$ has minimal polynomial $(z-\lambda_1)...(z-\lambda_m)$ with distinct $\lambda_1,...,\lambda_m$ Induction on $m$, Base case: $(m=1)$: Then $T-\lambda I=0$, so $T=\lambda I$ is diagonalizable. Induction step: $(m>1)$: Suppose the statement hold for $