# Lecture 26 ## Chapter VI Inner Product Spaces ### Inner Products and Norms 6A --- Review #### Dot products #### Inner product An inner product $\langle,\rangle:V\times V\to \mathbb{F}$ Positivity: $\langle v,v\rangle\geq 0$ Definiteness: $\langle v,v\rangle=0\iff v=0$ Additivity: $=+$ Homogeneity: $<\lambda u, v>=\lambda$ Conjugate symmetry: $=\overline{}$ #### Norm $||v||=\sqrt{}$ --- New materials ### Orthonormal basis 6B #### Definition 6.22 A list of vectors is **orthonormal** if each vector has norm = 1, and is orthogonal to every other vectors in the list. if a list $e_1,...,e_m\in V$ is orthonormal if $=1\begin{cases} 1 \textup{ if } j=k\\ 0 \textup{ if }j\neq k \end{cases}$. Example: * Standard basis in $\mathbb{F}^n$ is orthonormal. * $(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}),(\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}},0),(\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{-2}{\sqrt{6}})$ in $\mathbb{F}^3$ is orthonormal. * For $=\int^1_{-1}pq$ on $\mathscr{P}_2(\mathbb{R})$. The standard basis $(1,x,x^2)$ is not orthonormal. #### Theorem 6.24 Suppose $e_1,...,e_m$ is an orthonormal list, then $||a_1 e_1+...+a_m e_m||^2=|a_1|^2+...+|a_m|^2$ Proof: Using induction of $m$. $m=1$, clear ($||e_1||^2=1$) $m>1$, $||a_1 e_1+...a_{m-1}e_{m-1}||^2=|a_1|^2+...+|a_{m-1}|^2$ and $=0$ by Pythagorean Theorem. $||(a_1 e_1+...a_{m-1}e_{m-1})+a_m e_m||^2=||a_1 e_1+...a_{m-1}e_{m-1}||^2+||a_m e_m||^2=|a_1|^2+...+|a_{m-1}|^2+|a_m|^2$ #### Theorem 6.25 Every orthonormal list is linearly independent. Proof: $||a_1 e_1+...+a_m e_m||^2=0$, then $|a_1|^2+...+|a_m|^2=0$, then $a_1=...=a_m=0$ #### Theorem 6.28 Every orthonormal list of length $dim\ V$ is a basis. #### Definition 6.27 An orthonormal basis is a basis that is an orthonormal list. #### Theorem 6.26 Bessel's Inequality Suppose $e_1,...,e_m$ is an orthonormal list $v\in V$ $$ ||^2+...+||^2\leq ||v||^2 $$ Proof: Let $v\in V$, then let $n=e_1+...+e_m$, let $w=v-u$, Note that $=$, thus $=0, =0$, apply Pythagorean Theorem. $$ ||w+u||^2=||w||^2+||u||^2\\ ||v||^2\geq ||u||^2 $$ #### Theorem 6.30 Suppose $e_1,...,e_n$ is an orthonormal basis, and $u,v\in V$, then (a) $v=e_1+...+e_n$ (b) $||v||^2=||^2+...+||^2$ (c) $=\overline{}+...+\overline{}$ Proof: (a) let $a_1,...,a_n\in \mathbb{F}$ such that $v=a_1 e_1+...+a_n e_n$. $$ \begin{aligned} &=+...++...+\\ &=\\ &= a_k \end{aligned} $$ --- Note *6.30 (c)* means up to change of basis, every inner product on a finite dimensional vector space "looks like" an euclidean inner products... #### Theorem 6.32 Gram-Schmidt Let $v_1,...,v_m$ be a linearly independent list. Define $f_k\in V$ by $f_1=v_1,f_k=v_k-\sum_{j=1}^{k-1}\frac{}{||f_j||^2}f_j$ Define $e_k=\frac{f_k}{||f_k||}$, then $e_1,...,e_m$ is orthonormal $Span(v_1,...,v_m)=Span(f_1,...,f_m)$