# Lecture 31 ## Chapter VII Operators on Inner Product Spaces **Assumption: $V,W$ are finite dimensional inner product spaces.** ### Self adjoint and Normal Operators 7A #### Definition 7.10 An operator $T\in\mathscr{L}(V)$ is **self adjoint** if $T=T^*$. ie. $\langle Tv,u\rangle=\langle v,Tu \rangle$ for $u,v\in V$. Example: Consider $M(T)=\begin{pmatrix} 2 & i\\ -i& 3 \end{pmatrix}$, Then $$ M(T^*)=M(T)^*=\begin{pmatrix} \bar{2},\bar{-i}\\ \bar{i},\bar{3} \end{pmatrix}=\begin{pmatrix} 2 &i\\ -i& 3 \end{pmatrix}=M(T) $$ So $T=T^*$ so $T$ is self adjoint #### Theorem 7.12 Every eigenvalue of a self adjoint operator $T$ is real. Proof: Suppose $T$ is self adjoint and $\lambda$ is an eigenvalue of $T$, and $v$ is an eigenvector with eigenvalue $\lambda$. Consider $\langle Tv,v\rangle$ $$ \langle Tv, v\rangle= \langle v, Tv\rangle= \langle v,\lambda v\rangle= \bar{\lambda}\langle v,v\rangle=\bar{\lambda}||v||^2 $$ $$ \langle Tv, v\rangle= \langle \lambda v, v\rangle= \langle v, v\rangle= \lambda\langle v,v\rangle=\lambda||v||^2\\ $$ So $\lambda=\bar{\lambda}$, so $\lambda$ is real. NoteL (7.12) is only interesting for complex vector spaces. #### Theorem 7.13 Suppose $V$ is a complex inner product space and $T\in\mathscr{L}(V)$, then $$ \langle Tv, v\rangle =0 \textup{ for every }v\in V\iff T=0 $$ Note: (7.13) is **False** over real vector spaces. The counterexample is $T$ the rotation by $90\degree$ operator. ie. $M(T)=\begin{pmatrix} 0&-1\\ 1&0 \end{pmatrix}$ Proof: $\Rightarrow$ Suppose $u,w\in V$ $$ \begin{aligned} \langle Tu,w \rangle&=\frac{\langle T(u+w),u+w\rangle -\langle T(u-w),u-w\rangle}{4}+\frac{\langle T(u+iw),u+iw\rangle -\langle T(u-iw),u-iw\rangle}{4}i\\ &=0 \end{aligned} $$ Since $w$ is arbitrary $\implies Tu=0, \forall u\in V\implies T=0$. #### Theorem 7.14 Suppose $V$ is a complex inner product space and $T\in \mathscr{L}(V)$ thne $$ T \textup{ is self adjoint }\iff \langle Tv, v\rangle \in \mathbb{R} \textup{ for every} v \in V $$ Proof: $$ \begin{aligned} T\textup{ is self adjoint}&\iff T-T^*=0\\ &\iff \langle (T-T^*)v,v\rangle =0 (\textup{ by \textbf{7.13}})\\ &\iff \langle Tv, v\rangle -\langle T^*v,v \rangle =0\\ &\iff \langle Tv, v\rangle -\overline{\langle T,v \rangle} =0\\ &\iff\langle Tv,v\rangle \in \mathbb{R} \end{aligned} $$ #### Theorem 7.16 Suppose $T$ is a self adjoint operator, then $\langle Tv, v\rangle =0,\forall v\in V\iff T=0$ Proof: Note the complex case is **Theorem 7.13**, so assume $V$ is a real vector space. Let $u,w\in V$ consider $\Rightarrow$ $$ \langle Tu,w\rangle=\frac{\langle T(u+w),u+w\rangle -\langle T(u-w),u-w\rangle}{4}=0 $$ We set $\langle Tw,u\rangle=\langle w,Tu\rangle =\langle Tu,w\rangle$ #### Normal Operators #### Definition 7.18 An operator $T\in \mathscr{L}(V)$ on an inner product space is **normal** if $TT^*=T^*T$ ie. $T$ commutes with its adjoint #### Theorem (7.20) An operator $T$ is normal if and only if $$ ||Tv||=||T^*v||,\forall v\in V $$ Proof: The key idea is that $T^*T-TT^*$ is self adjoint. $$ (T^*T-TT^*)^*=(T^*T)^*-(TT^*)^*=T^*T-TT^* $$