# Lecture 35 ## Chapter VIII Operators on complex vector spaces ### Generalized Eigenvectors and Nilpotent Operators 8A Recall: Definition 8.8 Suppose $T\in \mathscr{L}(V)$ and $\lambda$ is an eigenvalue of $T$. A vector $v\in V$ is called a **generalized eigenvector** of $T$ corresponding to $\lambda$ if $v\neq 0$ and $$ (T-\lambda I)^k v=0 $$ for some positive integer $k$. Example: For $T\in\mathscr{L}(\mathbb{F})$ The matrix for $T$ is $\begin{pmatrix} 0&1\\0&0 \end{pmatrix}$ When $\lambda=0$, $\begin{pmatrix} 1 & 0 \end{pmatrix}$ is an eigenvector $\begin{pmatrix} 0&1 \end{pmatrix}$ is not and eigenvector but it is a generalized eigenvector. In fact $\begin{pmatrix} 0&1\\0&0 \end{pmatrix}^2=\begin{pmatrix} 0&0\\0&0 \end{pmatrix}$, so any nonzero vector is a generalized eigenvector. is a generalized eigenvector of $T$ corresponding to eigenvalue $0$. Fact: $v\in V$ is a generalized eigenvector of $T$ corresponding to $\lambda\iff (T-\lambda I)^{dim\ V}v=0$ #### Theorem 8.9 Suppose $\mathbb{F}=\mathbb{C}$ and $T\in \mathscr{L}(V)$ Then $\exists$ basis of $V$ consisting of generalized eigenvector of $T$. Proof: Let $n=dim\ V$ we will induct on $n$. Base case $n=1$, Every nonzero vector in $V$ is an eigenvector of $T$. Inductive step: Let $n=dim\ V$, assume the theorem is tru for all vector spaces with $dim $$ \begin{aligned} 0&=(T-\lambda I)^n v\\ &=(B+A)^n v\\ &=\sum^n_{k=0} \begin{pmatrix} n\\k \end{pmatrix} A^{n-k}B^kv \end{aligned} $$ Then we apply $(T-\alpha I)^{m-1}$, which is $B^{m-1}$ to both sides $$ \begin{aligned} 0&=A^nB^{m-1}v \end{aligned} $$ Since $(T-\alpha I)^{m-1}\neq 0$, $A=0$, then $\alpha I-\lambda I=0$, $\alpha=\lambda$