# Lecture 8 ## Chapter III Linear maps **Assumption: $U,V,W$ are vector spaces (over $\mathbb{F}$)** ### Vector Space of Linear Maps 3A #### Definition 3.1 A **linear map** from $V$ to $W$ is a function from $T:V\to W$ with the following properties: 1. Additivity: $T(u+v)=T(u)+T(v),\forall u,v\in V$ 2. Homogeneity: $T(\lambda v)=\lambda T(v),\forall \lambda \in \mathbb{F},v\in V$ #### Notation * $Tv=T(v)$ * $\mathscr{L}(V,W)$ denotes the set of linear maps from $V$ to $W$. (homomorphism, $Hom(V,W)$) * $\mathscr{L}(V)$ denotes the set of linear maps from $V$ to $V$. (endomorphism, $End(V)$) #### Example * zero map $0(v)\in \mathscr{L}(V,W)$ $0(v)=0$ * identity map $I\in \mathscr{L}(V,W)$, $I(v)=v$ * scaling map $T\in \mathscr{L}(V,W)$, $T(v)=av,a\in \mathbb{F}$ * differentiation map $D\in \mathscr{L}(\mathscr{P}_m(\mathbb{F}),\mathscr{P}_{m-1}(\mathbb{F}))$, $D(f)=f'$ #### Lemma 3.10 $T0=0$ for $T\in \mathscr{L}(V,W)$ Proof: $T(0+0)=T(0)+T(0)$ #### Theorem 3.4 Linear map lemma Suppose $v_1,...,v_n$ is a basis for $V$, and suppose $w_1,...,w_n\in W$ are arbitrary vector. Then, there exists a unique linear map. $T:V\to W$ such that $T_{v_i}=w_i$ for $i=1,...,n$ Proof: First we show existence. by constrains, $T(c_1 v_1,...+c_n v_n)=c_1w_1+...+c_n w_n$ T is well defined because $v_1,....v_n$ are a basis. Need to show that $T$ is a linear map. * Additivity: let $u,v\in V$ and suppose $a_1,...,a_n,b_1,...,b_n\in \mathbb{F}$ with $u=a_1v_1+....+a_n v_n ,v=b_1v_1+...+b_2v_n$, then $T(u+v)=T((a_1+b_1)v_1+...+(a_n+b_n)v_n)=Tu+Tv$ Proof for homogeneity used for exercise. Need to show $T$ is unique. Let $S\in\mathscr{L}(V,W)$ such that $Sv_i=w_i,i=1,...,n$ $$ S(c_1 v_1+...+c_n v_n)=S(c_1v_1)+S(...)+S(c_n v_n)=c_1S(v_1)+...+c_nS(v_n) +c_1w_1+...+c_nw_n $$ Then $S=T$ #### Definition 3.5 Let $S,T\in \mathscr{L}(V,W)$, then define * $(S+T)\in\mathscr{L}(V,W)$ by $(S+T)(v)=Sv+Tv$ * for $\lambda \in \mathbb{F}$, $(\lambda T)\in \mathscr{L}(V,W)$, $(\lambda T)(v)=\lambda T(v)$ Exercises: Show that $S+T$ and $\lambda T$ are linear maps. #### Theorem 3.6 $\mathscr{L}(V,W)$ is a vector space. Sketch of proof: * additive identity: $0(v)=0$ * associativity: * commutativity: * additive inverse: $T\to (-1)T=-T$ * scalar multiplication $1T=T$ * distributive #### Definition 3.7 Multiplication for linear map: $(ST)v=S(T(v))=(S\circ T)(v)$ **Not commutative but associative**.