# Math4302 Modern Algebra (Lecture 3) ## Groups
More examples for groups Let $\mathbb{Q}^+$ be the set of positive rational numbers. Then $(\mathbb{Q}^+,\times)$ is a abelian group with identity $1$ and inverse $a^{-1}=\frac{1}{a}$. If we defined $*$ by $a*b=\frac{ab}{2}$, then we have identity $2$. $a*e=\frac{ae}{2}=a$, we have $e=2$. and inverse $a^{-1}a=\frac{a^2}{2}=2$, therefore $a^{-1}=\frac{4}{a}$. This is also an abelian group.
### Properties for groups - $(a*b)^{-1}=b^{-1}*a^{-1}$ (inverse) - $a*b=a*c\implies b=c$ (cancellation on the left) - $b*a=c*a\implies b=c$ (cancellation on the right) - If $a*b=e$, then $b=a^{-1}$ (we can solve linear equations) #### Additional notation for $n\geq 1$, - $a^n=a*a\cdot \cdots \cdot a$ (n times) - $a^{-n}=a^{-1}\cdot \cdots \cdot a^{-1}$ (n times) for $n=0$, $a^0=e$ We can easily prove this is equivalent to our usual sense for power notations. That is - $a^n*a^m=a^{n+m}$ - $(a^n)^m=a^{nm}$ - $a^{-n}=(a^{-1})^n$ ### Finite groups Group with 4 elements. |*|e|a|b|c| |---|---|---|---|---| |e|e|a|b|c| |a|a|b|c|e| |b|b|c|e|a| |c|c|e|a|b| Note $a,c$ are inverses and $b$ self inverse. _isomorphic to $(\mathbb{Z}_4,+)$, $(\{1,-1,i,-i\},\cdot)$_ and we may also have |*|e|a|b|c| |---|---|---|---|---| |e|e|a|b|c| |a|a|e|c|b| |b|b|c|e|a| |c|c|b|a|e| is #### Cyclic groups It is the group of integers modulo addition $n$. - Associativity: $(a+b)+c=a+(b+c)$ - Identity: $a+0=a$ - Inverses: $a+(-a)=0$ For group with $4$ elements |*|0|1|2|3| |---|---|---|---|---| |0|0|1|2|3| |1|1|2|3|0| |2|2|3|0|1| |3|3|0|1|2| #### Complex numbers Consider $\{1,i,-1,-i\}$ with multiplication. |*|1|i|-1|-i| |---|---|---|---|---| |1|1|i|-1|-i| |i|i|-1|-i|1| |-1|-1|-i|1|i| |-i|-i|1|i|-1| Note that if we replace $1$ with $0$ and $i$ with $1$, and $-1$ with $2$ and $-i$ with $3$, you get the exact the same table as $\mathbb{Z}_4$.