# Math4302 Modern Algebra (Lecture 4) ## Groups ### Group Isomorphism #### Definition of isomorphism Let $(G_1,*_1)$ and $(G_2,*_2)$ be two groups. Then $(G_1,*_1)$ and $(G_2,*_2)$ are isomorphic if there exists a bijection $f:G_1\to G_2$ such that for all $x,y\in G_1$, $f(x*y)=f(x)*f(y)$. We say that $(G_1,*_1)$ is isomorphic to $(G_2,*_2)$. $$ (G_1,*_1)\simeq (G_2,*_2) $$
Example and non-example for isomorphism As we have seen in class, $(\mathbb{Z}_4,+)$ and $(\{1,-1,i,-i\},*)$ are isomorphic. --- $(\mathbb{Z},+)$ and $(\mathbb{R},+)$ are not isomorphic. There is no bijection from $(\mathbb{Z},+)$ to $(\mathbb{R},+)$. --- Let $M_2(\mathbb{R})$ denotes the set of $2\times 2$ matrices with addition. Then $(\mathbb{R}^4,+)$ and $(M_2(\mathbb{R}),+)$ are isomorphic. --- $(\mathbb{Z},+)$ and $(\mathbb{Q},+)$ are not isomorphic. - There exists bijection mapping $\mathbb{Z}\to \mathbb{Q}$, but Suppose we have $f(1)=a\in \mathbb{Q}$, so there exists unique element $f(x), x\in \mathbb{Z}$ such that $f(x)=\frac{a}{2}$, if such function $f$ is isomorphic (preserves addition), then $f(2x)=f(x)+f(x)=a$. So $2x=1$, such $x$ does not exist in $\mathbb{Z}$.
#### Isomorphism of Groups defines an equivalence relation Isomorphism of groups is an equivalence relation. 1. Reflexive: $(G_1,*_1)\simeq (G_1,*_1)$ 2. Symmetric: $(G_1,*_1)\simeq (G_2,*_2)\implies (G_2,*_2)\simeq (G_1,*_1)$ 3. Transitive: $(G_1,*_1)\simeq (G_2,*_2)\land (G_2,*_2)\simeq (G_3,*_3)\implies (G_1,*_1)\simeq (G_3,*_3)$ Easy to prove using bijective maps and definition of isomorphism. #### Some fun facts For any prime number, there is only one group of order $p$ for any $p\in\mathbb{N}$. [OEIS A000001](https://oeis.org/A000001) #### Example of non-abelian finite groups Permutations (Symmetric groups) $S_n$. Let $A$ be a set of $n$ elements, a permutation of $A$ is a bijection from $A$ to $A$. $\sigma: A\to A$ Let $A$ be a finite set, $A=\{1,2,...,n\}$. Then there are $n!$ permutations of $A$. We can denote each permutation on $A=\{1,2,...,n\}$ by $$ \sigma=\begin{pmatrix} 1&2&...&n\\ \sigma(1)&\sigma(2)&...&\sigma(n) \end{pmatrix} $$ #### Symmetric Groups The set of permutation on a set $A$ form a group under function composition. - Identity: $\sigma_{id}=\begin{pmatrix} 1&2&...&n\\ 1&2&...&n \end{pmatrix}$ - Inversion: If $f: A\to A$ is a bijection, then $f^{-1}: A\to A$ is a bijection and is the inverse of $f$. - Associativity: $(\sigma_1*\sigma_2)*\sigma_3=\sigma_1*(\sigma_2*\sigma_3)$ $|S_n|=n!$ When $n=1,2$, the group is abelian. but when $n=3$, we have some $\sigma,\tau\in S_3$ such that $\sigma*\tau\neq \tau*\sigma$. Let $\sigma=\begin{pmatrix} 1&2&3\\ 2&3&1 \end{pmatrix}$ and $\tau=\begin{pmatrix} 1&2&3\\ 3&2&1\\ \end{pmatrix}$, then $\sigma*\tau=\begin{pmatrix} 1&2&3\\ 1&3&2 \end{pmatrix}$ and $\tau*\sigma=\begin{pmatrix} 1&2&3\\ 2&1&3 \end{pmatrix}$. Therefore $\tau*\sigma\neq \sigma*\tau$. Then we have a group of order $3!=6$ that is not abelian. For any $n\geq 3$, $S_n$ is not abelian. (Proof by induction, keep $\sigma,\tau$ extra entries being the same$). Another notation for permutations is using the cycle. Suppose we have $\sigma=\begin{pmatrix} 1&2&3&4\\ 2&3&1&4\\ \end{pmatrix}$, then we have the cycle $(1,2,3)(4)$. this means we send $1\to 2\to 3\to 1$ and $4\to 4$. Some case we ignore $(4)$ and just write $(1,2,3)$. > [!TIP] > > From now on, we use $G$ to denote $(G,*)$ and $ab$ to denote $a*b$ to save chalks. > > If $G$ is abelian, we use $+$ to denote the group operations > > - Instead of $a*b$ or $ab$, we write $a+b$. > - Instead of $a^{-1}$, we write $-a$. > - Instead of $e$, we write $0$. > - Instead of $a^{n}$, we write $na$.