# Math4302 Modern Algebra (Lecture 5) ## Groups ### Subgroups A subset $H\subseteq G$ is a subgroup of $G$ if - $e\in H$ - $\forall a,b\in H, a b\in H$ - $a\in H\implies a^{-1}\in H$ _$H$ with $*$ is a group_ We denote as $H\leq G$.
Example For an arbitrary group $(G,*)$, $(\{e\},*)$ and $(G,*)$ are always subgroups. --- $(\mathbb{Z},+)$ is a subgroup of $(\mathbb{R},+)$. --- Non-example: $(\mathbb{Z}_+,+)$ is not a subgroup of $(\mathbb{Z},+)$. --- Subgroup of $\mathbb{Z}_4$: $(\{0,1,2,3\},+)$ (if $1\in H$, $3\in H$) $(\{0,2\},+)$ $(\{0\},+)$ --- Subgroup of $\mathbb{Z}_5$: $(\{0,1,2,3,4\},+)$ $(\{0\},+)$ _Cyclic group with prime order has only two subgroups_ --- Let $D_n$ denote the group of symmetries of a regular $n$-gon. (keep adjacent points pairs). $$ D_n=\{\sigma\in S_n\mid i,j\text{ are adjacent } \iff \sigma(i),\sigma(j)\text{ are adjacent }\} $$ $$ \begin{pmatrix} 1&2&3&4\\ 2&3&1&4 \end{pmatrix}\notin D_4 $$ $D_4$ has order $8$ and $S_4$ has order $24$. $|D_n|=2n$. ($n$ option to rotation, $n$ option to reflection. For $\sigma(1)$ we have $n$ option, $\sigma(2)$ has 2 option where the remaining only has 1 option.) Since $1-4$ is not adjacent in such permutation. $D_n\leq S_n$ ($S_n$ is the symmetric group of $n$ elements).
#### Lemma of subgroups If $H\subseteq G$ is a non-empty subset of a group $G$. then ($H$ is a subgroup of $G$) if and only if ($a,b\in H\implies ab^-1\in H$).
Proof If $H$ is subgroup, then $e\in H$, so $H$ is non-empty and if $a,b\in H$, then $b^{-1}\in H$, so $ab^{-1}\in H$. --- If $H$ has the given property, then $H$ is non-empty and if $a,b\in H$, then $ab^-1\in H$, so - There is some $a,a\in H$, $aa^{-1}\in H$, so $e\in H$. - If $b\in H$, then $e\in H$, so $eb^{-1}\in H$, so $b^{-1}\in H$. - If $b,c\in H$, then $c^{-1}$, so $bc^{-1}^{-1}\in H$, so $bc\in H$.
#### Cyclic group $G$ is cyclic if $G$ is a subgroup generated by $a\in G$. (may be infinite) $\mathbb{Z}_n\leq D_n\leq S_n$. Cyclic group is always abelian.