# Lecture 5 ## Continue on differentiation ### L'Hôpital's Rule Suppose $f$ and $g$ are real differentiable on $(a,b)$ and $g'(x)\neq 0$ for all $x\in (a,b)$. Suppose $\frac{f'(x)}{g'(x)}\to A$ as $x\to a$, If $f(x)\to 0$ and $g(x)\to 0$ as $x\to a$, or $g(x)\to \infty$ as $x\to a$, then $\frac{f(x)}{g(x)}\to A$ as $x\to a$. Proof: **Main step: Let $-\inftyA$, there exists $c\in (a,b)$ such that $\frac{f(x)}{g(x)} Topological definition of limit: > > $h(x)\to A$ as $x\to a$ if $\forall \epsilon>0$, $\exists \delta>0$ such that $|x-a|<\delta$ implies $|h(x)-A|<\epsilon$. > > In other words, if for any open neighborhood $V$ of $A$, there exists an open neighborhood $U$ of $a$ such that $h(U)\subseteq V$. Case 1: $A=-\infty$, for any $q>A$, there exists $\delta>0$ such that $x\in (a,a+\delta)$ implies $\frac{f(x)}{g(x)}0$ and take $q=A+\epsilon$. $\exists c_1\in (a,b)$ such that $\forall x\in (a,c_1)$, $\frac{f(x)}{g(x)}-A$. Apply main step, $\exists c_2\in (a,b)$ such that $\forall x\in (a,c_2)$, $\frac{F(x)}{g(x)}<-A+\epsilon$. so $\forall x\in (a,c_2)$, $\frac{f(x)}{g(x)}>A-\epsilon$. We take $c=\min(c_1,c_2)$. Then $\forall x\in (a,c)$, $\frac{f(x)}{g(x)}