# Math4121 Lecture 20 ## Continue on Chapter 4 ### Properties of the Cantor Set Monotonicity: If $S\subseteq T$, then $c_e(S)\leq c_e(T)$. Sub-additivity: $c_e(S\cup T)\leq c_e(S)+c_e(T)$. Example: $S=\mathbb{Q}\cap[0,1]$, $T=[0,1]\setminus\mathbb{Q}$. Then $c_e(S)=1$, $c_e(T)=1$, even though $S\cap T=\emptyset$. $S\cup T=[0,1]$, $c_e(S\cup T)=1\leq 1+1=c_e(S)+c_e(T)$ The above example shows that: > The following is **not true**: $c_e(S\cup T)=c_e(S)+c_e(T)$ if $S\cap T=\emptyset$. However, the following is true: (In $\mathbb{R}$) If $S=\bigcup_{n=1}^{\infty} I_n$, $T=\bigcup_{n=1}^{\infty} J_n$, where $I_n$ and $J_n$ are intervals, and $S\cap T=\emptyset$, then $c_e(S\cup T)=c_e(S)+c_e(T)$. ### Back to Osgood's Lemma #### Osgood's Lemma Let $S$ be a closed, bounded set in $\mathbb{R}$, and $S_1\subseteq S_2\subseteq \ldots$, and $S=\bigcup_{n=1}^{\infty} S_n$. Then $\lim_{k\to\infty} c_e(S_k)=c_e(S)$.
Proof of Osgood's Lemma Trivial that $c_e(S_k)\leq c_e(S)$. We need to show that $\forall \epsilon>0, \exists K$ such that $c_e(S_k)>c_e(S)-\epsilon$ for all $k\geq K$. Let $U_k$ be finite union of open intervals containing $S_k$ such that $c_e(U_k) ### Convergence Theorems for sequences of functions Is $$ \lim_{n\to\infty}\int f_n(x)\ dx=\int \lim_{n\to\infty} f_n(x)\ dx $$ ? Yes when $f_n\to f$ uniformly. Uniform convergence also means $\lim_{n\to\infty} \sup_{x\in [a,b]}|f_n(x)-f(x)|=0$. But there exists some cases that does not converge to the limit but still satisfies the above condition. #### Theorem 4.5 (Arzela-Osgood Theorem) If $\{f_n\}_{n=1}^{\infty}$ is a sequence of continuous, uniformly bounded function and $f(x)=\lim_{n\to\infty} f_n(x)$ exists for all $x\in [a,b]$ (pointwise convergence), then $$ \lim_{n\to\infty}\int_a^b f_n(x)\ dx=\int_a^b f(x)\ dx $$
Proof of Arzela-Osgood Theorem (incomplete) Define $\Gamma_{\alpha}=\{x:\forall m\in \mathbb{N} \textup{ and }\forall \delta>0, \exists n\geq m \textup{ s.t. } |y-x|<\delta \textup{ and } |f_n(y)-f_m(y)|>\alpha\}$. _$\Gamma_{\alpha}$ is the negation of $(\alpha,\delta)$ definition of limit._ $\Gamma_{\alpha}$ is closed and nowhere dense. Continue on next lecture.