# Lecture 25 ## Chapter VI Inner Product Spaces ### Inner Products and Norms 6A #### Dot Product (Euclidean Inner Product) $$ v\cdot w=v_1w_1+...+v_n w_n $$ $$ -\cdot -:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R} $$ Some properties * $v\cdot v\geq 0$ * $v\cdot v=0\iff v=0$ * $(u+v)\cdot w=u\cdot w+v\cdot w$ * $(c\cdot v)\cdot w=c\cdot(v\cdot w)$ #### Definition 6.2 An inner product $\langle,\rangle:V\times V\to \mathbb{F}$ Positivity: $\langle v,v\rangle\geq 0$ Definiteness: $\langle v,v\rangle=0\iff v=0$ Additivity: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ Homogeneity: $\langle \lambda u, v\rangle=\lambda\langle u,v\rangle$ Conjugate symmetry: $\langle u,v\rangle=\overline{\langle v,u\rangle}$ Note: the dot product on $\mathbb{R}^n$ satisfies these properties Example: $V=C^0([-1,-])$ $L_2$ - inner product. $\langle f,g\rangle=\int^1_{-1} f\cdot g$ $\langle f,f\rangle=\int ^1_{-1}f^2\geq 0$ $\langle f+g,h\rangle=\langle f,h\rangle+\langle g,h\rangle$ $\langle \lambda f,g\rangle=\lambda\langle f,g\rangle$ $\langle f,g\rangle=\int^1_{-1} f\cdot g=\int^1_{-1} g\cdot f=\langle g,f\rangle$ The result is in real vector space so no conjugate... #### Theorem 6.6 For $\langle,\rangle$ an inner product (a) Fix $V$, then the map given by $u\mapsto \langle u,v\rangle$ is a linear map (Warning: if $\mathbb{F}=\mathbb{C}$, then $u\mapsto\langle u,v\rangle$ is not linear). (b,c) $\langle 0,v\rangle=\langle v,0\rangle=0$ (d) $\langle u,v+w\rangle=\langle u,v\rangle+\langle u,w\rangle$ (second terms are additive.) (e) $\langle u,\lambda v\rangle=\bar{\lambda}\langle u,v\rangle$ #### Definition 6.4 An **inner product space** is a pair of vector space and inner product on it. $(v,\langle,\rangle)$. In practice, we will say "$V$ is an inner product space" and treat $V$ as the vector space. For the remainder of the chapter. $V,W$ are inner product vector spaces... #### Definition 6.7 For $v\in V$ the **norm of $V$** is given by $||v||:=\sqrt{\langle v,v\rangle}$ #### Theorem 6.9 Suppose $v\in V$. (a) $||v||=0\iff v=0$ (b) $||\lambda v||=|\lambda|\ ||v||$ Proof: $||\lambda v||^2=\langle \lambda v,\lambda v\rangle =\lambda\langle v,\lambda v\rangle=\lambda\bar{\lambda}\langle v,v\rangle$ So $|\lambda|^2 \langle v,v\rangle=|\lambda|^2||v||^2$, $||\lambda v||=|\lambda|\ ||v||$ #### Definition 6.10 $v,u\in V$ are **orthogonal** if $\langle v,u\rangle=0$. #### Theorem 6.12 (Pythagorean Theorem) If $u,v\in V$ are orthogonal, then $||u+v||^2=||u||^2+||v||$ Proof: $$ \begin{aligned} ||u+v||^2&=\langle u+v,u+v\rangle\\ &=\langle u,u+v\rangle+\langle v,u+v\rangle\\ &=\langle u,u\rangle+\langle u,v\rangle+\langle v,u\rangle+\langle v,v\rangle\\ &=||u||^2+||v||^2 \end{aligned} $$ #### Theorem 6.13 Suppose $u,v\in V$, $v\neq 0$, set $c=\frac{}{||v||^2}$, then let $w=u-v\cdot v$, then $v$ and $w$ are orthogonal. #### Theorem 6.14 (Cauchy-Schwarz) Let $u,v\in V$, then $||\leq ||u||\ ||v||$ where equality occurs only $u,v$ are parallel... Proof: Take the square norm of $u=\frac{}{||u||^2}v+w$. #### Theorem 6.17 Triangle Inequality If $u,v\in V$, then $||u+v||\leq ||u||+||v||$ Proof: $$ \begin{aligned} ||u+v||^2&=\\ &=+++\\ &=||u||^2+||v||^2+2Re()\\ &\leq ||u||^2+||v||^2+2||\\ &\leq ||u||^2+||v||^2+2||u||\ ||v||\\ &\leq (||u||+||v ||)^2 \end{aligned} $$