# Math4501 Lecture 1 In many practical problems (ODEs (ordinary differential equations), PdEs (partial differential equations), System of equations) closed-form analytical solutions are unknown. -> resort ot computational algorithms (approximation) For example, Deep learning classifiers **Root finding** $$ f(x)=\sum_{i=1}^n a_i x^i $$ for $n\geq 5$. find all roots $x\in \mathbb{R}$ of $f(x)=0$. **Investment** Invest a dollars every month return with the rate $r$. $g(r)=a\sum_{i=1}^n (1+r)^i=a\left[\frac{(1+r)^{n+1}-(1+r)}{r}\right]$ Say want $g(r)=b$ for some $b$. $f(r)=a(1+n)^{n+1}-a(1+n)-br=0$ use Newton's method to find $r$ such that $f(r)=0$. Since $f$ is non-linear, that is $f(x+y)\neq f(x)+f(y)$. Let $$ f_1(x_1,\dots, x_m)=0\\ \vdots\\ f_m(x_1,\dots, x_m)=0 $$ be a system of $m$ equations $\vec{f} \mathbb{R}^m \to \mathbb{R}^m$. and $f_1(\vec{x})=\vec{0}$. If $\vec{f}$ is linear, note that $$ \begin{aligned} \vec{f}(\vec{x})&=\vec{f}(\begin{bmatrix}x_1\\ \vdots\\ x_m\end{bmatrix})\\ &=\vec{f}(x_1\begin{bmatrix}1\\ 0\\ \vdots\\ 0\end{bmatrix}+x_2\begin{bmatrix}0\\ 1\\ \vdots\\ 0\end{bmatrix}+\cdots+x_m\begin{bmatrix}0\\ 0\\ \vdots\\ 1\end{bmatrix})\\ &=x_1\vec{f}(\begin{bmatrix}1\\ 0\\ \vdots\\ 0\end{bmatrix})+x_2\vec{f}(\begin{bmatrix}0\\ 1\\ \vdots\\ 0\end{bmatrix})+\cdots+x_m\vec{f}(\begin{bmatrix}0\\ 0\\ \vdots\\ 1\end{bmatrix})\\ &=A\vec{x} \end{aligned} $$ where $\vec{e}_i$ is the $i$-th standard basis vector. Gaussian elimination (LU factorization)