# Math4201 Topology I (Lecture 12) ## Metric spaces ### Basic properties and definitions #### Definition of metric space A metric space is a set $X$ with a function $d:X\times X\to \mathbb{R}$ that satisfies the following properties: 1. $\forall x,y\in X, d(x,y)\geq 0$ and $d(x,y)=0$ if and only if $x=y$. (positivity) 2. $\forall x,y\in X, d(x,y)=d(y,x)$. (symmetry) 3. $\forall x,y,z\in X, d(x,z)\leq d(x,y)+d(y,z)$. (triangle inequality)
Example of metric space Let $X=\mathbb{R}$ and $d(x,y)=|x-y|$. Check definition of metric space: 1. Positivity: $d(x,y)=|x-y|\geq 0$ and $d(x,y)=0$ if and only if $x=y$. 2. Symmetry: $d(x,y)=|x-y|=|y-x|=d(y,x)$. 3. Triangle inequality: $d(x,z)=|x-z|\leq |x-y|+|y-z|=d(x,y)+d(y,z)$ since $|a+b|\leq |a|+|b|$ for all $a,b\in \mathbb{R}$. --- Let $X$ be arbitrary. The trivial metric is $d(x,y)=\begin{cases} 0 & \text{if } x=y \\ 1 & \text{if } x\neq y \end{cases}$ Check definition of metric space: 1. Positivity: $d(x,y)=\begin{cases} 0 & \text{if } x=y \\ 1 & \text{if } x\neq y \end{cases}\geq 0$ and $d(x,y)=0$ if and only if $x=y$. 1. Symmetry: $d(x,y)=\begin{cases} 0 & \text{if } x=y \\ 1 & \text{if } x\neq y \end{cases}=d(y,x)$. 1. Triangle inequality use case by case analysis.
#### Balls of a metric space forms a basis for a topology Let $(X,d)$ be a metric space. $x\in X$ and $r>0, r\in \mathbb{R}$. We define the ball of radius $r$ centered at $x$ as $B_r(x)=\{y\in X:d(x,y)0,r\in \mathbb{R}\}\text{ is a basis for a topology on }X $$
Example of balls of a metric space Let $X=\mathbb{R}$ and $d(x,y)=\begin{cases} 0 & \text{if } x=y \\ 1 & \text{if } x\neq y \end{cases}$ The balls of this metric space are: $$ B_r(x)=\begin{cases} \{x\} & \text{if } r<1 \\ X & \text{if } r\geq 1 \end{cases} $$ > [!NOTE] > > This basis generate the discrete topology of $X$. --- Let $X=\mathbb{R}$ and $d(x,y)=|x-y|$. The balls of this metric space are: $$ B_r(x)=\{(x-r,x+r)\} $$ This basis is the set of all open sets in $\mathbb{R}$, which generates the standard topology of $\mathbb{R}$.
Proof Let's check the two properties of basis: 1. $\forall x\in X$, $\exists B_r(x)\in \{B_r(x)|x\in X,r>0,r\in \mathbb{R}\}$ such that $x\in B_r(x)$. (Trivial by definition of non-zero radius ball) 2. $\forall B_r(x),B_r(y)\in \{B_r(x)|x\in X,r>0,r\in \mathbb{R}\}$, $\forall z\in B_r(x)\cap B_r(y)$, $\exists B_r(z)\in \{B_r(x)|x\in X,r>0,r\in \mathbb{R}\}$ such that $z\in B_r(z)\subseteq B_r(x)\cap B_r(y)$. Observe that for any $z\in B_r(x)$, then there exists $\delta>0$ such that $B_\delta(z)\subseteq B_r(x)$. Let $\delta=r-d(x,z)$, then $B_\delta(z)\subseteq B_r(x)$ (by triangle inequality) Similarly, there exists $\delta'>0$ such that $B_\delta'(z)\subseteq B_r(y)$. Take $\lambda=min\{\delta,\delta'\}$, then $B_\lambda(z)\subseteq B_r(x)\cap B_r(y)$.
#### Definition of Metric topology For any metric space $(X,d)$, the topology generated by the balls of the metric space is called metric topology. #### Definition of metrizable A topological space $(X,\mathcal{T})$ is metrizable if it is the metric topology for some metric $d$ on $X$. > Q: When is a topological space metrizable? #### Lemma: Every metric topology is Hausdorff If a topology isn't Hausdorff, then it isn't metrizable.
Example of non-metrizable space Trivial topology **with at least two points** is not Hausdorff, so it isn't metrizable. --- Finite complement topology on infinite set is not Hausdorff. Suppose there exists $x,y\in X$ such that $x\neq y$ and $x\in U\subseteq X$ and $y\in V\subseteq X$ such that $X-U$ and $X-V$ are finite. Since $U\cap V=\emptyset$, we have $V\subseteq X-U$, which is finite. So $X-V$ is infinite. (contradiction that $X-V$ is finite) So $X$ with finite complement topology is not Hausdorff, so it isn't metrizable.
Proof Let $x,y\in (X,d)$ and $x\neq y$. To show that $X$ is Hausdorff, it is suffices to show that there exists $r,r'>0$ such that $B_r(x)\cap B_r'(y)=\emptyset$. Take $r=r'=\frac{1}{2}d(x,y)$, then $B_r(x)\cap B_r'(y)=\emptyset$. (by triangle inequality) We prove this by contradiction. Suppose $\exists z\in B_r(x)\cap B_r'(y)$, then $d(x,z) ### Other metrics on $\mathbb{R}^n$ Let $\mathbb{R}^n$ be the set of all $n$-tuples of real numbers with standard topology. Let $d: \mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}$ be defined by (the Euclidean distance) $$ d(u,v)=\sqrt{\sum_{i=1}^n (u_i-v_i)^2} $$ In $\mathbb{R}^2$ the ball is a circle. Let $\rho(u,v)=\max_{i=1}^n |u_i-v_i|$. (Square metric) In $\mathbb{R}^2$ the ball is a square. Let $m(u,v)=\sum_{i=1}^n |u_i-v_i|$. (Manhattan metric) In $\mathbb{R}^2$ the ball is a diamond. #### Lemma: Square metric, Manhattan metric, and Euclidean metric are well defined metrics on $\mathbb{R}^n$ Proof ignored. Hard part is to show the triangle inequality. May use Cauchy-Schwarz inequality.