# Topic 2: Finite-dimensional Hilbert spaces Recall the complex number is a tuple of two real numbers, $z=(a,b)$ with addition and multiplication defined by $$ (a,b)+(c,d)=(a+c,b+d) $$ $$ (a,b)\cdot(c,d)=(ac-bd,ad+bc) $$ or in polar form, $$ z=re^{i\theta}=r(\cos\theta+i\sin\theta) $$ where $r=\sqrt{a^2+b^2}=\sqrt{z\overline{z}}$ and $\theta=\tan^{-1}(b/a)$. The complex conjugate of $z$ is $\overline{z}=(a,-b)$. ## Section 1: Finite-dimensional Complex Vector Spaces Here, we use the field $\mathbb{C}$ of complex numbers. or the field $\mathbb{R}$ of real numbers as the field $\mathbb{F}$ we are going to encounter. ### Definition of vector space A vector space $\mathscr{V}$ over a field $\mathbb{F}$ is a set equipped with an **addition** and a **scalar multiplication**, satisfying the following axioms: 1. Addition is associative and commutative. For all $u,v,w\in \mathscr{V}$, Associativity: $$ (u+v)+w=u+(v+w) $$ Commutativity: $$ u+v=v+u $$ 2. Additive identity: There exists an element $0\in \mathscr{V}$ such that $v+0=v$ for all $v\in \mathscr{V}$. 3. Additive inverse: For each $v\in \mathscr{V}$, there exists an element $-v\in \mathscr{V}$ such that $v+(-v)=0$. 4. Multiplicative identity: There exists an element $1\in \mathbb{F}$ such that $v\cdot 1=v$ for all $v\in \mathscr{V}$. 5. Multiplicative inverse: For each $v\in \mathscr{V}$ and $c\in \mathbb{F}$, there exists an element $c^{-1}\in \mathbb{F}$ such that $v\cdot c^{-1}=1$. 6. Distributivity: For all $u,v\in \mathscr{V}$ and $c,d\in \mathbb{F}$, $$ c(u+v)=cu+cv $$ A vector is an ordered pair of elements over the field $\mathbb{F}$. If we consider $\mathbb{F}=\mathbb{C}^n$, $n\in \mathbb{N}$, then $u=(a_1,a_2,\cdots,a_n), v=(b_1,b_2,\cdots,b_n)\in \mathbb{C}^n$ are vectors. The addition and scalar multiplication are defined by $$ u+v=(a_1+b_1,a_2+b_2,\cdots,a_n+b_n) $$ $$ cu=(ca_1,ca_2,\cdots,ca_n) $$ $c\in \mathbb{C}$. The matrix transpose is defined by $$ u^T=(a_1,a_2,\cdots,a_n)^T=\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} $$ The complex conjugate transpose is defined by $$ u^*=(a_1,a_2,\cdots,a_n)^*=\begin{pmatrix} \overline{a_1} \\ \overline{a_2} \\ \vdots \\ \overline{a_n} \end{pmatrix} $$ > In physics, the complex conjugate is sometimes denoted by $z^*$ instead of $\overline{z}$. > The complex conjugate transpose is sometimes denoted by $u^\dagger$ instead of $u^*$. ### Hermitian inner product and norms On $\mathbb{C}^n$, the Hermitian inner product is defined by $$ \langle u,v\rangle=\sum_{i=1}^n \overline{u_i}v_i $$ The norm is defined by $$ \|u\|=\sqrt{\langle u,u\rangle} $$ #### Definition of Inner product Let $\mathscr{H}$ be a complex vector space. An inner product on $\mathscr{H}$ is a function $\langle \cdot, \cdot \rangle: \mathscr{H}\times \mathscr{H}\to \mathbb{C}$ satisfying the following axioms: 1. For each $u\in \mathscr{H}$, $v\mapsto \langle u,v\rangle$ is a linear map. $$ \langle u,av+bw\rangle=a\langle u,v\rangle+b\langle u,w\rangle $$ For all $u,v,w\in \mathscr{H}$ and $a,b\in \mathbb{C}$. 2. For all $u,v\in \mathscr{H}$, $\langle u,v\rangle=\overline{\langle v,u\rangle}$. $u\mapsto \langle u,v\rangle$ is a conjugate linear map. 3. $\langle u,u\rangle\geq 0$ and $\langle u,u\rangle=0$ if and only if $u=0$. #### Definition of norm Let $\mathscr{H}$ be a complex vector space. A norm on $\mathscr{H}$ is a function $\|\cdot\|: \mathscr{H}\to \mathbb{R}$ satisfying the following axioms: 1. For all $u\in \mathscr{H}$, $\|u\|\geq 0$ and $\|u\|=0$ if and only if $u=0$. 2. For all $u\in \mathscr{H}$ and $c\in \mathbb{C}$, $\|cu\|=|c|\|u\|$. 3. Triangle inequality: For all $u,v\in \mathscr{H}$, $\|u+v\|\leq \|u\|+\|v\|$. #### Definition of inner product space A complex vector space $\mathscr{H}$ with an inner product is called a **Hilbert space**. #### Cauchy-Schwarz inequality For all $u,v\in \mathscr{H}$, $$ |\langle u,v\rangle|\leq \|u\|\|v\| $$ #### Parallelogram law For all $u,v\in \mathscr{H}$, $$ \|u+v\|^2+\|u-v\|^2=2(\|u\|^2+\|v\|^2) $$ #### Polarization identity For all $u,v\in \mathscr{H}$, $$ \langle u,v\rangle=\frac{1}{4}(\|u+v\|^2-\|u-v\|^2+i\|u+iv\|^2-i\|u-iv\|^2) $$ #### Additional definitions Let $u,v\in \mathscr{H}$. $\|v\|$ is the length of $v$. $v$ is a unit vector if $\|v\|=1$. $u,v$ are orthogonal if $\langle u,v\rangle=0$. #### Definition of orthonormal basis A set of vectors $\{e_1,e_2,\cdots,e_n\}$ in a Hilbert space $\mathscr{H}$ is called an orthonormal basis if 1. $\langle e_i,e_j\rangle=\delta_{ij}$ for all $i,j\in \{1,2,\cdots,n\}$. $$ \delta_{ij}=\begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i\neq j \end{cases} $$ 2. $n=\dim \mathscr{H}$. ### Subspaces and orthonormal bases #### Definition of subspace A subset $\mathscr{W}$ of a vector space $\mathscr{V}$ is a subspace if it is closed under addition and scalar multiplication. #### Definition of orthogonal complement Let $E$ be a subset of a Hilbert space $\mathscr{H}$. The orthogonal complement of $E$ is the set of all vectors in $\mathscr{H}$ that are orthogonal to every vector in $E$. $$ E^\perp=\{v\in \mathscr{H}: \langle v,w\rangle=0 \text{ for all } w\in E\} $$ #### Definition of orthogonal projection Let $E$ be a $m$-dimensional subspace of a Hilbert space $\mathscr{H}$. An orthogonal projection of $E$ is a linear map $P_E: \mathscr{H}\to E$ $$ P_E(v)=\sum_{i=1}^m \langle v,e_i\rangle e_i $$ #### Definition of orthonormal direct sum A inner product space $\mathscr{H}$ is the direct sum of $E_1,E_2,\cdots,E_n$ if $$ \mathscr{H}=E_1\oplus E_2\oplus \cdots \oplus E_n $$ and $E_i\cap E_j=\{0\}$ for all $i\neq j$. That is, $\forall v\in \mathscr{H}$, there exists a unique $v_i\in E_i$ such that $v=v_1+v_2+\cdots+v_n$. #### Definition of meet and join of subspaces Let $E$ and $F$ be two subspaces of a Hilbert space $\mathscr{H}$. The meet of $E$ and $F$ is the subspace $\mathscr{H}$ such that $$ E\land F=E\cap F $$ The join of $E$ and $F$ is the subspace $\mathscr{H}$ such that $$ E\lor F=\{u+v: u\in E, v\in F\} $$ ### Null space and range #### Definition of null space Let $A$ be a linear map from a vector space $\mathscr{V}$ to a vector space $\mathscr{W}$. The null space of $A$ is the set of all vectors in $\mathscr{V}$ that are mapped to the zero vector in $\mathscr{W}$. $$ \text{Null}(A)=\{v\in \mathscr{V}: Av=0\} $$ #### Definition of range Let $A$ be a linear map from a vector space $\mathscr{V}$ to a vector space $\mathscr{W}$. The range of $A$ is the set of all vectors in $\mathscr{W}$ that are mapped from $\mathscr{V}$. $$ \text{Range}(A)=\{w\in \mathscr{W}: \exists v\in \mathscr{V}, Av=w\} $$ ### Dual spaces and adjoints of linear maps\ #### Definition of linear map A linear map $T: \mathscr{V}\to \mathscr{W}$ is a function that satisfies the following axioms: 1. Additivity: For all $u,v\in \mathscr{V}$ and $a,b\in \mathbb{F}$, $$ T(au+bv)=aT(u)+bT(v) $$ 2. Homogeneity: For all $u\in \mathscr{V}$ and $a\in \mathbb{F}$, $$ T(au)=aT(u) $$ #### Definition of linear functionals A linear functional $f: \mathscr{V}\to \mathbb{F}$ is a linear map from $\mathscr{V}$ to $\mathbb{F}$. Here, $\mathbb{F}$ is the field of complex numbers. #### Definition of dual space Let $\mathscr{V}$ be a vector space over a field $\mathbb{F}$. The dual space of $\mathscr{V}$ is the set of all linear functionals on $\mathscr{V}$. $$ \mathscr{V}^*=\{f:\mathscr{V}\to \mathbb{F}: f\text{ is linear}\} $$ If $\mathscr{H}$ is a finite-dimensional Hilbert space, then $\mathscr{H}^*$ is isomorphic to $\mathscr{H}$. Note $v\in \mathscr{H}\mapsto \langle v,\cdot\rangle\in \mathscr{H}^*$ is a conjugate linear isomorphism. #### Definition of adjoint of a linear map Let $T: \mathscr{V}\to \mathscr{W}$ be a linear map. The adjoint of $T$ is the linear map $T^*: \mathscr{W}\to \mathscr{V}$ such that $$ \langle Tv,w\rangle=\langle v,T^*w\rangle $$ for all $v\in \mathscr{V}$ and $w\in \mathscr{W}$. #### Definition of self-adjoint operators A linear operator $T: \mathscr{V}\to \mathscr{V}$ is self-adjoint if $T^*=T$. #### Definition of unitary operators A linear map $T: \mathscr{V}\to \mathscr{V}$ is unitary if $T^*T=TT^*=I$. ### Dirac's bra-ket notation #### Definition of bra and ket Let $\mathscr{H}$ be a Hilbert space. The bra-ket notation is a notation for vectors in $\mathscr{H}$. $$ \langle v|w\rangle $$ is the inner product of $v$ and $w$. $$ |v\rangle $$ is the vector (or linear map) $v$. $$ |u\rangle\langle v| $$ is a linear map from $\mathscr{H}$ to $\mathscr{H}$. ### The spectral theorem for self-adjoint operators ### Spectral theorem for self-adjoint operators #### Definition of spectral theorem Let $\mathscr{H}$ be a Hilbert space. A self-adjoint operator $T: \mathscr{H}\to \mathscr{H}$ is a linear operator that is equal to its adjoint. Then all the eigenvalues of $T$ are real and there exists an orthonormal basis of $\mathscr{H}$ consisting of eigenvectors of $T$. #### Definition of spectrum The spectrum of a linear operator on finite-dimensional Hilbert space $T: \mathscr{H}\to \mathscr{H}$ is the set of all distinct eigenvalues of $T$. $$ \operatorname{sp}(T)=\{\lambda: \lambda\text{ is an eigenvalue of } T\}\subset \mathbb{C} $$ #### Definition of Eigenspace If $\lambda$ is an eigenvalue of $T$, the eigenspace of $T$ corresponding to $\lambda$ is the set of all eigenvectors of $T$ corresponding to $\lambda$. $$ E_\lambda(T)=\{v\in \mathscr{H}: Tv=\lambda v\} $$ We denote $P_\lambda(T):\mathscr{H}\to E_\lambda(T)$ the orthogonal projection onto $E_\lambda(T)$. #### Definition of Operator norm The operator norm of a linear operator $T: \mathscr{H}\to \mathscr{H}$ is the largest eigenvalue of $T$. $$ \|T\|=\max_{\|v\|=1} \|Tv\| $$ We say $T$ is **bounded** if $\|T\|<\infty$. We denote $B(\mathscr{H})$ the set of all bounded linear operators on $\mathscr{H}$. ### Partial trace #### Definition of trace Let $T$ be a linear operator on $\mathscr{H}$, $(e_1,e_2,\cdots,e_n)$ be a basis of $\mathscr{H}$ and $(\epsilon_1,\epsilon_2,\cdots,\epsilon_n)$ be a basis of dual space $\mathscr{H}^*$. Then the trace of $T$ is defined by $$ \operatorname{Tr}(T)=\sum_{i=1}^n \epsilon_i(T(e_i))=\sum_{i=1}^n \langle e_i,T(e_i)\rangle $$ This is equivalent to the sum of the diagonal elements of $T$. > Check the rest of the section defining the partial trace by viewing the tensor product section first. #### Definition of partial trace Let $T$ be a linear operator on $\mathscr{H}=\mathscr{A}\otimes \mathscr{B}$, where $\mathscr{A}$ and $\mathscr{B}$ are finite-dimensional Hilbert spaces. An operator $T$ on $\mathscr{H}=\mathscr{A}\otimes \mathscr{B}$ can be written as $$ T=\sum_{i=1}^n a_i A_i\otimes B_i $$ where $A_i$ is a linear operator on $\mathscr{A}$ and $B_i$ is a linear operator on $\mathscr{B}$. The partial trace of $T$ is the linear operator on $\mathscr{B}$ defined by $$ \operatorname{Tr}_{\mathscr{B}}(T)=\sum_{i=1}^n a_i \operatorname{Tr}(B_i) A_i $$ Or we can define the map $L_v: \mathscr{A}\to \mathscr{A}\otimes \mathscr{B}$ by $$ L_v(u)=u\otimes v $$ Note that $\langle u,L_v^*(u')\otimes v'\rangle=\langle u,u'\rangle \langle v,v'\rangle=\langle u\otimes v,u'\otimes v'\rangle=\langle L_v(u),u'\otimes v'\rangle$. Therefore, $L_v^*\sum_{j} u_j\otimes v_j=\sum_{j} \langle v,v_j\rangle u_j$. Then the partial trace of $T$ can also be defined by **Let $\{v_j\}$ be a set of orthonormal basis of $\mathscr{B}$.** $$ \operatorname{Tr}_{\mathscr{B}}(T)=\sum_{j} L^*_{v_j}(T)L_{v_j} $$ #### Definition of partial trace with respect to a state Let $T$ be a linear operator on $\mathscr{H}=\mathscr{A}\otimes \mathscr{B}$, where $\mathscr{A}$ and $\mathscr{B}$ are finite-dimensional Hilbert spaces. Let $\rho$ be a state on $\mathscr{B}$ consisting of orthonormal basis $\{v_j\}$ and eigenvalue $\{\lambda_j\}$. The partial trace of $T$ with respect to $\rho$ is the linear operator on $\mathscr{A}$ defined by $$ \operatorname{Tr}_{\mathscr{A}}(T)=\sum_{j} \lambda_j L^*_{v_j}(T)L_{v_j} $$ ### Space of Bounded Linear Operators > Recall the trace of a matrix is the sum of its diagonal elements. #### Hilbert-Schmidt inner product Let $T,S\in B(\mathscr{H})$. The Hilbert-Schmidt inner product of $T$ and $S$ is defined by $$ \langle T,S\rangle=\operatorname{Tr}(T^*S) $$ > Note here, $T^*$ is the complex conjugate transpose of $T$. If we introduce the basis $\{e_i\}$ in $\mathscr{H}$, then we can write the the space of bounded linear operators as $n\times n$ complex-valued matrices $M_n(\mathbb{C})$. For $T=(a_{ij})$, $S=(b_{ij})$, we have $$ \operatorname{Tr}(A^*B)=\sum_{i=1}^n \sum_{j=1}^n \overline{a_{ij}}b_{ij} $$ The inner product is the standard Hermitian inner product in $\mathbb{C}^{n\times n}$. #### Definition of Hilbert-Schmidt norm The Hilbert-Schmidt norm of a linear operator $T: \mathscr{H}\to \mathscr{H}$ is defined by $$ \|T\|=\sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2} $$ **[The trace of operator does not depend on the basis.](https://notenextra.trance-0.com/Math429/Math429_L38#theorem-850)** ### Tensor products of finite-dimensional Hilbert spaces Let $X=X_1\times X_2\times \cdots \times X_n$ be a Cartesian product of $n$ sets. Let $x=(x_1,x_2,\cdots,x_n)$ be a vector in $X$. $x_j\in X_j$ for $j=1,2,\cdots,n$. Let $a\in X_j$ for $j=1,2,\cdots,n$. Let's denote the space of all functions from $X$ to $\mathbb{C}$ by $\mathscr{H}$ and the space of all functions from $X_j$ to $\mathbb{C}$ by $\mathscr{H}_j$. $$ \epsilon_{a}^{(j)}(x_j)=\begin{cases} 1 & \text{if } x_j=a \\ 0 & \text{if } x_j\neq a \end{cases} $$ Then we can define a basis of $\mathscr{H}_j$ by $\{\epsilon_{a}^{(j)}(x_j)\}_{a\in X_j}$. _Any function $f:X_j\to \mathbb{C}$ can be written as a linear combination of the basis vectors._ $$ f(x_j)=\sum_{a\in X_j} f(a)\epsilon_{a}^{(j)}(x_j) $$ Now, let $a=(a_1,a_2,\cdots,a_n)$ be a vector in $X$, and $x=(x_1,x_2,\cdots,x_n)$ be a vector in $X$. Note that $a_j,x_j\in X_j$ for $j=1,2,\cdots,n$. Define $$ \epsilon_a(x)=\prod_{j=1}^n \epsilon_{a_j}^{(j)}(x_j)=\begin{cases} 1 & \text{if } a_j=x_j \text{ for all } j=1,2,\cdots,n \\ 0 & \text{otherwise} \end{cases} $$ Then we can define a basis of $\mathscr{H}$ by $\{\epsilon_a\}_{a\in X}$. _Any function $f:X\to \mathbb{C}$ can be written as a linear combination of the basis vectors._ $$ f(x)=\sum_{a\in X} f(a)\epsilon_a(x) $$ **The tensor product of basis elements** is defined by $$ \epsilon_a=\epsilon_{a_1}^{(1)}\otimes \epsilon_{a_2}^{(2)}\otimes \cdots \otimes \epsilon_{a_n}^{(n)} $$ **The tensor product of two finite-dimensional Hilbert spaces** (in $\mathscr{H}$) is defined by Let $\mathscr{H}_1$ and $\mathscr{H}_2$ be two finite dimensional Hilbert spaces. Let $u_1\in \mathscr{H}_1$ and $v_1\in \mathscr{H}_2$. $$ u_1\otimes v_1 $$ is a bi-anti-linear map from $\mathscr{H}_1\otimes \mathscr{H}_2$ to $\mathbb{F}$ (in this case, $\mathbb{C}$). And $\forall u\in \mathscr{H}_1, v\in \mathscr{H}_2$, $$ (u_1\otimes v_1)(u, v)=\langle u,u_1\rangle \langle v,v_1\rangle $$ We call such forms **decomposable**. The tensor product of two finite-dimensional Hilbert spaces, denoted by $\mathscr{H}_1\otimes \mathscr{H}_2$, is the set of all linear combinations of decomposable forms. Represented by the following: $$ (\sum_{i=1}^n a_i u_i\otimes v_i)(u, v)=\sum_{i=1}^n a_i \langle v,u_i\rangle \langle v_i,u\rangle $$ Note that $a_i\in \mathbb{C}$ for complex-vector spaces. This is a linear space of dimension $\dim \mathscr{H}_1\times \dim \mathscr{H}_2$. We define the inner product of two elements of $\mathscr{H}_1\otimes \mathscr{H}_2$ ($u_1\otimes v_1:(\mathscr{H}_1\otimes \mathscr{H}_2)\to \mathbb{C}$, $u_2\otimes v_2:(\mathscr{H}_1\otimes \mathscr{H}_2)\to \mathbb{C}$ $\in \mathscr{H}_1\otimes \mathscr{H}_2$) by $$ \langle u_1\otimes v_1, u_2\otimes v_2\rangle=\langle u_1,u_2\rangle \langle v_1,v_2\rangle=(u_1\otimes v_1)(u_2,v_2) $$ ### Tensor products of linear operators Let $T_1$ be a linear operator on $\mathscr{H}_1$ and $T_2$ be a linear operator on $\mathscr{H}_2$, where $\mathscr{H}_1$ and $\mathscr{H}_2$ are finite-dimensional Hilbert spaces. The tensor product of $T_1$ and $T_2$ (denoted by $T_1\otimes T_2$) on $\mathscr{H}_1\otimes \mathscr{H}_2$, such that **on decomposable elements** is defined by $$ (T_1\otimes T_2)(v_1\otimes v_2)=T_1(v_1)\otimes T_2(v_2)=\langle v_1,T_1(v_1)\rangle \langle v_2,T_2(v_2)\rangle $$ for all $v_1\in \mathscr{H}_1$ and $v_2\in \mathscr{H}_2$. The tensor product of two linear operators $T_1$ and $T_2$ is a linear combination in the form as follows: $$ \sum_{i=1}^n a_i T_1(u_i)\otimes T_2(v_i) $$ for all $u_i\in \mathscr{H}_1$ and $v_i\in \mathscr{H}_2$. Such tensor product of linear operators is well defined. If $\sum_{i=1}^n a_i u_i\otimes v_i=\sum_{j=1}^m b_j u_j\otimes v_j$, then $a_i=b_j$ for all $i=1,2,\cdots,n$ and $j=1,2,\cdots,m$. Then $\sum_{i=1}^n a_i T_1(u_i)\otimes T_2(v_i)=\sum_{j=1}^m b_j T_1(u_j)\otimes T_2(v_j)$. #### Tensor product of linear operators on Hilbert spaces Let $T_1$ be a linear operator on $\mathscr{H}_1$ and $T_2$ be a linear operator on $\mathscr{H}_2$, where $\mathscr{H}_1$ and $\mathscr{H}_2$ are finite-dimensional Hilbert spaces. The tensor product of $T_1$ and $T_2$ (denoted by $T_1\otimes T_2$) on $\mathscr{H}_1\otimes \mathscr{H}_2$, such that **on decomposable elements** is defined by $$ (T_1\otimes T_2)(v_1\otimes v_2)=T_1(v_1)\otimes T_2(v_2)=\langle v_1,T_1(v_1)\rangle \langle v_2,T_2(v_2)\rangle $$ #### Extended Dirac notation Suppose $\mathscr{H}=\mathbb{C}^n$ with the standard basis $\{e_i\}$. $e_j=|j\rangle$ and $$ |j_1\dots j_n\rangle=e_{j_1}\otimes e_{j_2}\otimes \cdots \otimes e_{j_n}= $$ #### The Hadamard Transform Let $\mathscr{H}=\mathbb{C}^2$ with the standard basis $\{e_1,e_2\}=\{|0\rangle,|1\rangle\}$. The linear operator $H_2$ is defined by $$ H_2=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}=\frac{1}{\sqrt{2}}(|0\rangle\langle 0|+|1\rangle\langle 0|+|0\rangle\langle 1|-|1\rangle\langle 1|) $$ The Hadamard transform is the linear operator $H_2$ on $\mathbb{C}^2$. ### Singular value and Schmidt decomposition #### Definition of SVD (Singular Value Decomposition) Let $T:\mathscr{U}\to \mathscr{V}$ be a linear operator between two finite-dimensional Hilbert spaces $\mathscr{U}$ and $\mathscr{V}$. We denote the inner product of $\mathscr{U}$ and $\mathscr{V}$ by $\langle \cdot, \cdot \rangle$. Then there exists a decomposition of $T$ $$ T=d_1 T_1+d_2 T_2+\cdots +d_n T_n $$ with $d_1>d_2>\cdots >d_n>0$ and $T_i:\mathscr{U}\to \mathscr{V}$ such that: 1. $T_iT_j^*=0$, $T_i^*T_j=0$ for $i\neq j$( 2. $T_i|_{\mathscr{R}(T_i^*)}:\mathscr{R}(T_i^*)\to \mathscr{R}(T_i)$ is an isomorphism with inverse $T_i^*$ where $\mathscr{R}(\cdot)$ is the range of the operator. The $d_i$ are called the singular values of $T$. [Gram-Schmidt Decomposition](https://notenextra.trance-0.com/Math429/Math429_L27#theorem-632-gram-schmidt) ## Basic Group Theory ### Finite groups #### Definition of group A group is a set $G$ with a binary operation $\cdot$ that satisfies the following axioms: 1. **Closure**: For all $a,b\in G$, $a\cdot b\in G$. 2. **Associativity**: For all $a,b,c\in G$, $(a\cdot b)\cdot c=a\cdot (b\cdot c)$. 3. **Identity**: There exists an element $e\in G$ such that for all $a\in G$, $a\cdot e=e\cdot a=a$. 4. **Inverses**: For all $a\in G$, there exists an element $b\in G$ such that $a\cdot b=b\cdot a=e$. #### Symmetric group $S_n$ The symmetric group $S_n$ is the group of all permutations of $n$ elements. $$ S_n=\{f: \{1,2,\cdots,n\}\to \{1,2,\cdots,n\} \text{ is a bijection}\} $$ #### Unitary group $U(n)$ The unitary group $U(n)$ is the group of all $n\times n$ unitary matrices. Such that $A^*=A$, where $A^*$ is the complex conjugate transpose of $A$. $A^*=(\overline{A})^T$. #### Cyclic group $\mathbb{Z}_n$ The cyclic group $\mathbb{Z}_n$ is the group of all integers modulo $n$. $$ \mathbb{Z}_n=\{0,1,2,\cdots,n-1\} $$ #### Definition of group homomorphism A group homomorphism is a function $\varPhi:G\to H$ between two groups $G$ and $H$ that satisfies the following axiom: $$ \varPhi(a\cdot b)=\varPhi(a)\cdot \varPhi(b) $$ A bijective group homomorphism is called group isomorphism. #### Homomorphism sends identity to identity, inverses to inverses Let $\varPhi:G\to H$ be a group homomorphism. $e_G$ and $e_H$ are the identity elements of $G$ and $H$ respectively. Then 1. $\varPhi(e_G)=e_H$ 2. $\varPhi(a^{-1})=\varPhi(a)^{-1}$. $\forall a\in G$ ### More on the symmetric group #### General linear group over $\mathbb{C}$ The general linear group over $\mathbb{C}$ is the group of all $n\times n$ invertible complex matrices. $$ GL(n,\mathbb{C})=\{A\in M_n(\mathbb{C}) \text{ is invertible}\} $$ The map $T: S_n\to GL(n,\mathbb{C})$ is a group homomorphism. #### Definition of sign of a permutation Let $T:S_n\to GL(n,\mathbb{C})$ be the group homomorphism. The sign of a permutation $\sigma\in S_n$ is defined by $$ \operatorname{sgn}(\sigma)=\det(T(\sigma)) $$ We say $\sigma$ is even if $\operatorname{sgn}(\sigma)=1$ and odd if $\operatorname{sgn}(\sigma)=-1$. ### Fourier Transform in $\mathbb{Z}_N$. The vector space $L^2(\mathbb{Z}_N)$ is the set of all complex-valued functions on $\mathbb{Z}_N$ with the inner product $$ \langle f,g\rangle=\sum_{k=0}^{N-1} \overline{f(k)}g(k) $$ An orthonormal basis of $L^2(\mathbb{Z}_N)$ is given by $\delta_y,y\in \mathbb{Z}_N$. $$ \delta_y(k)=\begin{cases} 1 & \text{if } k=y \\ 0 & \text{otherwise} \end{cases} $$ in Dirac notation, we have $$ \delta_y=|y\rangle=|y+N\rangle $$ #### Definition of Fourier transform Define $\varphi_k(x)=\frac{1}{\sqrt{N}}e^{2\pi i kx/N}$ for $k\in \mathbb{Z}_N$. $\varphi_k:\mathbb{Z}\to \mathbb{C}$ is a function. The Fourier transform of a function $F\in L^2(\mathbb{Z}_N)$ such that $(Ff)(k)=\langle \varphi_k,f\rangle$ is defined by $$ F=\frac{1}{\sqrt{N}}\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} e^{2\pi i kj/N}|k\rangle\langle j| $$ ### Symmetric and anti-symmetric tensors Let $\mathscr{H}^{\otimes n}$ be the $n$-fold tensor product of a Hilbert space $\mathscr{H}$. We define the $S_n$ on $\mathscr{H}^{\otimes n}$ by Let $\eta\in S_n$ be a permutation. $$ \prod(\eta)v_1\otimes v_2\otimes \cdots \otimes v_n=v_{\eta^{-1}(1)}\otimes v_{\eta^{-1}(2)}\otimes \cdots \otimes v_{\eta^{-1}(n)} $$ And extend to $\mathscr{H}^{\otimes n}$ by linearity. This gives the property that $\zeta,\eta\in S_n$, $\prod(\zeta\eta)=\prod(\zeta)\prod(\eta)$. #### Definition of symmetric and anti-symmetric tensors Let $\mathscr{H}$ be a finite-dimensional Hilbert space. An element in $\mathscr{H}^{\otimes n}$ is called symmetric if it is invariant under the action of $S_n$. Let $\alpha\in \mathscr{H}^{\otimes n}$ $$\prod(\eta)\alpha=\alpha \text{ for all } \eta\in S_n.$$ It is called anti-symmetric if $$ \prod(\eta)\alpha=\operatorname{sgn}(\eta)\alpha \text{ for all } \eta\in S_n. $$