# Topic 3: Separable Hilbert spaces ## Infinite-dimensional Hilbert spaces Recall from Topic 1. [$L^2$ space](https://notenextra.trance-0.com/Math401/Math401_T1#section-3-further-definitions-in-measure-theory-and-integration) Let $\lambda$ be a measure on $\mathbb{R}$, or any other field you are interested in. A function is square integrable if $$ \int_\mathbb{R} |f(x)|^2 d\lambda(x)<\infty $$ ### $L^2$ space and general Hilbert spaces #### Definition of $L^2(\mathbb{R},\lambda)$ The space $L^2(\mathbb{R},\lambda)$ is the space of all square integrable, measurable functions on $\mathbb{R}$ with respect to the measure $\lambda$ (The Lebesgue measure). The Hermitian inner product is defined by $$ \langle f,g\rangle=\int_\mathbb{R} \overline{f(x)}g(x) d\lambda(x) $$ The norm is defined by $$ \|f\|=\sqrt{\int_\mathbb{R} |f(x)|^2 d\lambda(x)} $$ The space $L^2(\mathbb{R},\lambda)$ is complete. [Proof ignored here] > Recall the definition of [complete metric space](https://notenextra.trance-0.com/Math4111/Math4111_L17#definition-312). The inner product space $L^2(\mathbb{R},\lambda)$ is complete. #### Definition of general Hilbert space A Hilbert space is a complete inner product space. #### General Pythagorean theorem Let $u_1,u_2,\cdots,u_N$ be an orthonormal set in an inner product space $\mathscr{V}$ (may not be complete). Then for all $v\in \mathscr{V}$, $$ \|v\|^2=\sum_{i=1}^N |\langle v,u_i\rangle|^2+\left\|v-\sum_{i=1}^N \langle v,u_i\rangle u_i\right\|^2 $$ [Proof ignored here] #### Bessel's inequality Let $u_1,u_2,\cdots,u_N$ be an orthonormal set in an inner product space $\mathscr{V}$ (may not be complete). Then for all $v\in \mathscr{V}$, $$ \sum_{i=1}^N |\langle v,u_i\rangle|^2\leq \|v\|^2 $$ Immediate from the general Pythagorean theorem. ### Orthonormal bases #### Definition of orthonormal basis An orthonormal basis of a Hilbert space $\mathscr{H}$ is a set of orthonormal vectors that spans $\mathscr{H}$.