# Lecture 36 ## Chapter VIII Operators on complex vector spaces ### Generalized Eigenvectors and Nilpotent Operators 8A If $T\in \mathscr{L}$, is an linear operator on $V$ and $n=dim\ V$. $\{0\}\subset null\ T\subset null\ T^2\subset \dots\subset null\ T^n=null\ T^{n+1}$ #### Definition 8.14 $T$ is called a nilpotent operator if $null\ T^n=V$. Equivalently, there exists $k>0$ such that $T^k=0$ #### Lemma 8.16 $T$ is nilpotent $\iff 0$ is the only eigenvalue of $T$. If $\mathbb{F}=\mathbb{C}$, then $0$ is the only eigenvalue $\implies T$ is nilpotent. Proof: If $T$ is nilpotent, then $T^k=0$ for some $k$. The minimal polynomial of $T$ is $z^m=0$ for some $m$. So $0$ is the only eigenvalue. over $\mathbb{C}$, the eigenvalues are all the roots of **minimal polynomial**. #### Proposition 8.17 The following statements are equivalent: 1. $T$ is nilpotent. 2. The minimal polynomial of $T$ is $z^m$ for some $m\geq 1$. 3. There is a basis of $V$ such that the matrix of $T$ is upper triangular with $0$ on the diagonal ($\begin{pmatrix}0&\dots&*\\ &\ddots& \\0 &\dots&0\end{pmatrix}$). ### Generalized Eigenspace Decomposition 8B Let $T\in \mathscr{L}(V)$ be an operator on $V$, and $\lambda$ be an eigenvalue of $T$. We want to study $T-\lambda I$. #### Definition 8.19 The generalized eigenspace $G(\lambda, T)=\{(T-\lambda I)^k v=0\textup{ for some }k\geq 1\}$ #### Lemma 8.20 $G(\lambda, T)=null\ (T-\lambda I)^{dim\ V}$ #### Proposition 8.22 If $\mathbb{F}=\mathbb{C}$, $\lambda_1,...,\lambda_m$ all the eigenvalues of $T\in \mathscr{L}$, then (a) $G(\lambda_i, T)$ is invariant under $T$. (b) $(T-\lambda_1)\vert_{G(\lambda_1,T)}$ is nilpotent. (c) $V=G(\lambda_1,T)\oplus...\oplus G(\lambda_m,T)$ Proof: (a) follows from $T$ commutes with $T-\lambda_1 I$. If $(T-\lambda_1 I)^k=0$, then $(T-\lambda_i T)^k T(v)=T((T-\lambda_i T)^kv)=0$ (b) follow from lemma (c) $V=G(\lambda_1,T)\oplus...\oplus G(\lambda_m,T)$ 1. $V$ has a basis of generalized eigenvectors $\implies V=G(\lambda_1,T)+...+G(\lambda_m,T)$ 2. If there exists $v_i\in G(\lambda_i,T)$, and $v_1+...+v_m=0$, then $v_i=0$ for each $i$. Because the generalized eigenvectors from distinct eigenvalues are linearly independent, $V=G(\lambda_1,T)\oplus...\oplus G(\lambda_m,T)$. #### Definition 8.23 Let $\lambda$ be an eigenvalue of $T$, the multiplicity of $\lambda$ is defined as $mul(x):= dim\ G(\lambda, T)=dim\ null\ (T-\lambda I)^{dim\ V}$ #### Lemma 8.25 If $\mathbb{F}=\mathbb{C}$, $$ \sum^n_{i=1} mul\ (\lambda_i)=dim\ V $$ Proof from proposition part (c). #### Definition 8.26 If $\mathbb{F}=\mathbb{C}$, we defined the characteristic polynomial of $T$ to be $$ q(z):=(z-\lambda_1)^{mul\ (\lambda_1)}\dots (z-\lambda_m)^{mul\ (\lambda_m)} $$ $deg\ q=dim\ V$, and roots of $q$ are eigenvalue of $V$. #### Theorem 8.29 Cayley-Hamilton Theorem Suppose $\mathbb{F}=\mathbb{C}$, $T\in \mathscr{L}(V)$, and $q$ is the characteristic polynomial of $T$. Then $q(T)=0$. Proof: $q(T)\in \mathscr{L}(V)$ is a linear operator. To show $q(T)=0$ it is enough to show $q(T)v_1=0$ for a basis $v_1,...,v_n$ of $V$. Since $V$ is a sum of vectors in $G(\lambda_1, T),...,G(\lambda_m,T)$. $$ q(T)=(T-\lambda_1 I)^{d_1}\dots (T-\lambda_m I)^{d_m} $$ The operators on the right side of the equation above all commute, so we can move the factor $(T-\lambda_k I)^{d_k}$ to be the last term in the expression on the right. Because $(T-\lambda_k I)^{d_k}\vert_{G(\lambda_k,T)}= 0$, we have $q(T)\vert_{G(\lambda_k,T)} = 0$, as desired. #### Theorem 8.30 Suppose $\mathbb{F}=\mathbb{C}$, $T\in \mathscr{L}(V)$. Then the characteristic polynomial of $T$ is a polynomial multiple of the minimal polynomial of $T$.