# Math4121 Lecture 39 ## Fundamental theorem of calculus (In Lebesgue integration) ### Preliminary results #### Lemma 1 Riemann integrable functions are Lebesgue integrable $$\int_a^b f(x)dx = \int_{[a,b]} f dm$$ #### Lemma 2 Density of continuous functions: Given $f$ integrable, then $\exists \epsilon > 0$ there is $g$ continuous such that $\int_{[a,b]} |f-g| dm < \epsilon$ #### Lemma 3 Maximal function: $f^*(x) = \sup_{I\text{ is open intervals}}A_I f(x)$, where $A_I = \frac{\chi_I}{m(I)} \int_I f dm$. Then $|\{x\in\mathbb{R}:f^*(x)>\lambda\}|<\frac{2}{\lambda}\int_{\mathbb{R}}|f|dm$ #### Lemma 4 $I=[a,b]$, $I_\delta = [a+\delta, b-\delta]$, $\delta>0$, $\lim_{\delta\to 0^+} A_{I_\delta} f(x) = A_I f(x)$. (Prove via dominated convergence theorem) > Riemann's Fundamental theorem of calculus: > > If $g$ is continuous on $[a,b]$, then $G(x) = \int_a^x g(t)dt$ is differentiable on $(a,b)$ and $G'(x) = g(x)$ for all $x\in(a,b)$. ### Lebesgue's Fundamental theorem of calculus If $f$ is Lebesgue integrable on $[a,b]$, then $F(x) = \int_a^x f(t)dt$ is differentiable almost everywhere and $F'(x) = f(x)$ almost everywhere. Outline: Let $\lambda,\epsilon > 0$. Find $g$ continuous such that $\int_{\mathbb{R}}|f-g|dm < \frac{\lambda \epsilon}{5}$. To control $A_I f(x)-f(x)=(A_I(f-g)(x))+(A_I g(x)-g(x))+(g(x)-f(x))$, we need to estimate the three terms separately. Our goal is to show that $\lim_{r\to 0^+}\sup_{I\text{ is open interval}, m(I)0$, we can find $r>0$ such that $\sup_{I\text{ is open interval}, m(I)\lambda \right\} $$ Need to show $m(F)<\epsilon$. Since $F\subseteq \{(f-g)^*>\frac{\lambda}{2}\}\cup \{(f-g)>\frac{\lambda}{2}\}$ $$ \limsup_{r\to 0^+}\sup_{I\text{ is open interval}, m(I)