# CSE510 Deep Reinforcement Learning (Lecture 4) Markov Decision Process (MDP) Part II ## Recall from last lecture An Finite MDP is defined by: - A finite set of **states** $s \in S$ - A finite set of **actions** $a \in A$ - A **transition function** $T(s, a, s')$ - Probability that a from s leads to $s'$, i.e., $P(s'| s, a)$ - Also called the model or the dynamics - A **reward function $R(s)$** ( Sometimes $R(s,a)$ or $R(s, a, s')$ ) - A **start state** - Maybe a **terminal state** A model for sequential decision making problem under uncertainty ### Optimal Policy and Bellman Optimality Equation The goal for a MDP is to compute or learn an optimal policy. - An **optimal policy** is one that achieves the highest value at any state $$ \pi^* = \arg\max_\pi V^\pi(s) $$ - We define the optimal value function using Bellman Optimality Equation $$ V^*(s) = R(s) + \gamma \max_{a\in A} \sum_{s'\in S} P(s'|s,a) V^*(s') $$ - The optimal policy is $$ \pi^*(s) = \arg\max_{a\in A} \sum_{s'\in S} P(s'|s,a) V^*(s') $$ ### The Existence of the Optimal Policy Theorem: for any Markov Decision Process - There exists an optimal policy - There can be many optimal policies, but all optimal policies achieve the same optimal value function - There is always a deterministic optimal policy for any MDP ## Solve MDP ### Value Iteration Repeatedly update an estimate of the optimal value function according to Bellman Optimality Equation. 1. Initialize an estimate for the value function arbitrarily $$ \hat{V}(s) \gets 0, \forall s \in S $$ 2. Repeat, update: $$ \hat{V}(s) \gets R(s) + \gamma \max_{a\in A} \sum_{s'\in S} P(s'|s,a) \hat{V}(s'), \forall s \in S $$
Example Suppose we have a robot that can move in a 2D grid. with the following dynamics: - with 80% probability, the robot moves in the direction of the action - with 10% probability, the robot moves in the direction of the action + 1 (wrap to left) - with 10% probability, the robot moves in the direction of the action - 1 (wrap to right) The gird ($V^0(s)$) is: |0|0|0|1| |0|*|0|-100| |0|0|0|0| If we fun the value iteration with $\gamma = 0.9$, we can update the value function as follows: $$ V^1(s) = R(s) + \gamma \max_{a\in A} \sum_{s'\in S} P(s'|s,a) V^0(s') $$ On point $(3,3)$, the best action is to move to the goal state, so: $$ \begin{aligned} V^1((3,3)) &= R((3,3)) + \gamma \max_{a\in A} \sum_{s'\in S} P(s'|(3,3),\text{right}) V^0((3,4)) &= 0+0.9 \times 0.8 \times 1 = 0.72 \end{aligned} $$ On point $(3,4)$, the best action is to move up so that you can stay in the grid with $90\%$ probability, so: $$ \begin{aligned} V^1((3,4)) &= R((3,4)) + \gamma \max_{a\in A} \sum_{s'\in S} P(s'|(3,4),\text{up}) V^0((3,4)) &= 1+0.9 \times (0.8+0.1) \times 1 = 1.81 \end{aligned} $$ On $t=1$, the value on grid is: |0|0|0.72|1.81| |0|*|0|-99.91| |0|0|0|0|
The general algorithm can be written as: ```python # suppose we defined the grid as previous example grid = [ [0, 0, 0, 1], [0, '*', 0, -100], [0, 0, 0, 0] ] m,n = len(grid), len(grid[0]) ACTIONS = {'up':(0,-1), 'down':(0,1), 'left':(-1,0), 'right':(1,0)} gamma = 0.9 V = value_iteration(gamma, ACTIONS, grid) print(V) def get_reward(action, i, j): reward = 0 reward += 0.8 * grid[i+action[0]][j+action[1]] if i+action[0] >= 0 and i+action[0] < m and j+action[1] >= 0 and j+action[1] < n and grid[i+action[0]][j+action[1]] != '*' else grid[i][j] reward += 0.1 * grid[i+action[0]][j+action[1]] if i+action[0] >= 0 and i+action[0] < m and j+action[1] >= 0 and j+action[1] < n and grid[i+action[0]][j+action[1]] != '*' else grid[i][j] reward += 0.1 * grid[i+action[0]][j+action[1]] if i+action[0] >= 0 and i+action[0] < m and j+action[1] >= 0 and j+action[1] < n and grid[i+action[0]][j+action[1]] != '*' else grid[i][j] return reward def value_iteration(gamma, ACTIONS, V): V_new=[[0]*m for _ in range(n)] while True: for i in range(m): for j in range(n): s = (i, j) V_new[i][j] = V[i][j] + gamma * max(get_reward(action, i, j) for action.values() in ACTIONS) if max(abs(V_new[i][j] - V[i][j]) for i in range(m) for j in range(n)) < 1e-6: break V = V_new return V ``` ### Convergence of Value Iteration Theorem: Value Iteration converges to the optimal value function $\hat{V}\to V^*$ as $t\to\infty$.
Proof For any estimate of the value function $\hat{V}$, we define the Bellman backup operator $\operatorname{B}:\mathbb{R}^{|S|}\to \mathbb{R}^{|S|}$ by $$ \operatorname{B}(\hat{V}(s)) = R(s) + \gamma \max_{a\in A} \sum_{s'\in S} P(s'|s,a) \hat{V}(s') $$ Note that $\operatorname{B}(V^*) = V^*$. Since $\|\max_{x\in X}f(x)-\max_{x\in X}g(x)\|\leq \max_{x\in X}\|f(x)-g(x)\|$, for any value function $V_1$ and $V_2$, we have $$ \begin{aligned} |\operatorname{B}(V_1(s))-\operatorname{B}(V_2(s))|&= \gamma \left|\max_{a\in A} \sum_{s'\in S} P(s'|s,a) V_1(s')-\max_{a\in A} \sum_{s'\in S} P(s'|s,a) V_2(s')\right|\\ &\leq \gamma \max_{a\in A} \left|\sum_{s'\in S} P(s'|s,a) V_1(s')-\sum_{s'\in S} P(s'|s,a) V_2(s')\right|\\ &\leq \gamma \max_{a\in A} \sum_{s'\in S} P(s'|s,a) |V_1(s')-V_2(s')|\\ &\leq \gamma \max_{s\in S}|V_1-V_2| \end{aligned} $$
Assume $0\leq \gamma < 1$, and reward $R(s)$ is bounded by $R_{\max}$. Then $$ V^*(s)\leq \sum_{t=0}^\infty \gamma^t R_{\max} = \frac{R_{\max}}{1-\gamma} $$ Let $V^k$ be the value function after $k$ iterations of Value Iteration. $$ \max_{s\in S}|V^k(s)-V^*(s)|\leq \frac{R_{\max}}{1-\gamma}\gamma^k $$ #### Stopping condition We can construct the optimal policy arbitrarily close to the optimal value function. If $\|V^k-V^{k+1}\|<\epsilon$, then $\|V^k-V^*\|\leq \epsilon\frac{\gamma}{1-\gamma}$. So we can select small $\epsilon$ to stop the iteration. ### Greedy Policy Given a $V^k$ that is close to the optimal value $V^*$, the greedy policy is: $$ \pi_{g}(s) = \arg\max_{a\in A} \sum_{s'\in S} T(s',a,s') V^k(s') $$ Here $T(s',a,s')$ is the transition function between state $s'$ and $s$ with action $a$. This selects the action looks best if we assume that we get value $V^k$ in one step. #### Value of a greedy policy If we define $V_g$ to be the value function of the greedy policy, then This is not necessarily optimal, but it is a good approximation. In homework, we will prove that if $\|V^k-V^*\|<\lambda$, then $\|V_g-V^*\|\leq 2\lambda\frac{\gamma}{1-\gamma}$. So we can set stopping condition so that $V_g$ has desired accuracy to $V^*$. There is a finite $\epsilon$ such that greedy policy is $\epsilon$-optimal. ### Problem of Value Iteration and Policy Iteration - It is slow $O(|S|^2|A|)$ - The max action at each state rarely changes - The policy converges before the value function ### Policy Iteration Interleaving polity evaluation and policy improvement. 1. Initialize a random policy $\hat{\pi}$ 2. Compute the value function $V^{\pi}$ 3. Update the policy $\pi$ to be greedy policy with respect to $V^{\pi}$ $$ \pi(s)\gets \arg\max_{a\in A} \sum_{s'\in S} P(s'|s,a) V^{\pi}(s') $$ 4. Repeat until convergence ### Exact Policy Evaluation by Linear Solver Let $V^{\pi}\in \mathbb{R}^{|S|}$ be a vector of values for each state, $r\in \mathbb{R}^{|S|}$ be a vector of rewards for each state. Let $P^{\pi}\in \mathbb{R}^{|S|\times |S|}$ be a transition matrix for the policy $\pi$. $$ P^{\pi}_{ij} = P(s_{t+1}=i|s_t=j,a_t=\pi(s_t)) $$ The Bellman equation for the policy can be written in vector form as: $$ \begin{aligned} V^{\pi} &= r + \gamma P^{\pi} V^{\pi} \\ (I-\gamma P^{\pi})V^{\pi} &= r \\ V^{\pi} &= (I-\gamma P^{\pi})^{-1} r \end{aligned} $$ - Proof involves showing that each iteration is also a contraction and monotonically improve the policy - Convergence to the exact optimal policy - The number of policies is finite In real world, policy iteration is usually faster than value iteration. #### Policy Iteration Complexity - Each iteration runs in polynomial time in the number of states and actions - There are at most |A|n policies and PI never repeats a policy - So at most an exponential number of iterations - Not a very good complexity bound - Empirically O(n) iterations are required - Challenge: try to generate an MDP that requires more than that n iterations ### Generalized Policy Iteration - Generalized Policy Iteration (GPI): any interleaving of policy evaluation and policy improvement - independent of their granularity and other details of the two processes ### Summary #### Policy Iteration vs Value Iteration - **PI has two loops**: inner loop (evaluate $V^{\pi}$) and outer loop (improve $\pi$) - **VI has one loop**: repeatedly apply $V^{k+1}(s) = \max_{a\in A} [r(s,a) + \gamma \sum_{s'\in S} P(s'|s,a) V^k(s')]$ - **Trade-offs**: - PI converges in few outer steps if you can evaluate quickly/accurately; - VI avoids expensive exact evaluation, doing cheaper but many Bellman optimality updates. - **Modified Policy Iteration**: partial evaluation + improvement. - **Modified Policy Iteration**: partial evaluation + improvement.