# Lecture 20 ## Chapter 5: Authentication ### Construction of CRHF (Collision Resistant Hash Function) Let $h: \{0, 1\}^{n+1} \to \{0, 1\}^n$ be a CRHF. Base on the discrete log assumption, we can construct a CRHF $H: \{0, 1\}^{n+1} \to \{0, 1\}^n$ as follows: $Gen(1^n):(g,p,y)$ $p\in \tilde{\Pi}_n(p=2q+1)$ $g$ generator for group of sequence $\mod p$ (G_q) $y$ is a random element in $G_q$ $h_{g,p,y}(x,b)=y^bg^x\mod p$, $y^bg^x\mod p \in \{0,1\}^n$ $g^x\mod p$ if $b=0$, $y\cdot g^x\mod p$ if $b=1$. Under the discrete log assumption, $H$ is a CRHF. - It is easy to sample $(g,p,y)$ - It is easy to compute - Compressing by 1 bit Proof: The hash function $h$ is a CRHF Suppose there exists an adversary $\mathcal{A}$ that can break $h$ with non-negligible probability $\mu$. $$ P[(p,g,y)\gets Gen(1^n);(x_1,b_1),(x_2,b_2)\gets \mathcal{A}(p,g,y):y^{b_1}g^{x_1}\equiv y^{b_2}g^{x_2}\mod p\land (x_1,b_1)\neq (x_2,b_2)]=\mu(n)>\frac{1}{p(n)} $$ Where $y^{b_1}g^{x_1}=y^{b_2}g^{x_2}\mod p$ is the collision of $H$. Suppose $b_1=b_2$. Then $y^{b_1}g^{x_1}\equiv y^{b_2}g^{x_2}\mod p$ implies $g^{x_1}\equiv g^{x_2}\mod p$. So $x_1=x_2$ and $(x_1,b_1)=(x_2,b_2)$. So $b_1\neq b_2$, Without loss of generality, say $b_1=1$ and $b_2=0$. $y\cdot g^{x_1}\equiv g^{x_2}\mod p$ implies $y\equiv g^{x_2-x_1}\mod p$. We can create a adversary $\mathcal{B}$ that can break the discrete log assumption with non-negligible probability $\mu(n)$ using $\mathcal{A}$. Let $g,p$ be chosen and set random $x$ such that $y=g^x\mod p$. Let the algorithm $\mathcal{B}$ defined as follows: ```pseudocode function B(p,g,y): (x_1,b_1),(x_2,b_2)\gets \mathcal{A}(p,g,y) If (x_1,1) and (x_2,0) and there is a collision: y=g^{x_2-x_1}\mod p return x_2-x_1 for b=1 Else: return "Failed" ``` $$ P[B\text{ succeeds}]\geq P[A\text{ succeeds}]-\frac{1}{p(n)}>\frac{1}{p(n)} $$ So $\mathcal{B}$ can break the discrete log assumption with non-negligible probability $\mu(n)$, which contradicts the discrete log assumption. So $h$ is a CRHF. QED To compress by more, say $h_k:{0,1}^n\to \{0,1\}^{n-k},k\geq 1$, then we can use $h: \{0,1\}^{n+1}\to \{0,1\}^n$ multiple times. $$ h_k(x)=h(h(\cdots(h(x)))\cdots)=h^{k}(x) $$ To find a collision of $h_k$, the adversary must find a collision of $h$. ### Application of CRHF to Digital Signature Digital signature scheme on $\{0,1\}^*$ for a fixed security parameter $n$. (one-time secure) - Use Digital Signature Scheme on $\{0,1\}^{n}$: $Gen, Sign, Ver$. - Use CRHF family $\{h_i:\{0,1\}^*\to \{0,1\}^n\}_{i\in I}$ $Gen'(1^n):(pk,sk)\gets Gen(1^n)$, choose $i\in I$ uniformly at random. $sk'=(sk,i)$ $Sign'_{sk'}(m):\sigma\gets Sign_{sk}(h_i(m))$, return $(i,\sigma)$ $pk'=(pk,i)$ $Ver'_{pk'}(m,(i,\sigma)):Ver_{pk}(m,\sigma)$ and $i\in I$ One-time secure: - Given that ($Gen,Sign,Ver$) is one-time secure - $h$ is a CRHF Then ($Gen',Sign',Ver'$) is one-time secure. Ideas of Proof: If the digital signature scheme ($Gen',Sign',Ver'$) is not one-time secure, then there exists an adversary $\mathcal{A}$ which can ask oracle for one signature on $m_1$ and receive $\sigma_1=Sign'_{sk'}(m_1)=Sign_{sk}(h_i(m_1))$. - It outputs $m_2\neq m_1$ and receives $\sigma_2=Sign'_{sk'}(m_2)=Sign_{sk}(h_i(m_2))$. - If $Ver'_{pk'}(m_2,\sigma_2)$ is accepted, then $Ver_{pk}(h_i(m_2),\sigma_2)$ is accepted and $i\in I$. There are two cases to consider: Case 1: $h_i(m_1)=h_i(m_2)$, Then $\mathcal{A}$ finds a collision of $h$. Case 2: $h_i(m_1)\neq h_i(m_2)$, Then $\mathcal{A}$ produced valid signature on $h_i(m_2)$ after only seeing $Sign'_{sk'}(m_1)\neq Sign'_{sk'}(m_2)$. This contradicts the one-time secure of ($Gen,Sign,Ver$). QED ### Many-time Secure Digital Signature Using one-time secure digital signature scheme on $\{0,1\}^*$ to construct many-time secure digital signature scheme on $\{0,1\}^*$. Let $Gen,Sign,Ver$ defined as follows: $Gen(1^n):(pk,sk)\gets (pk_0,sk_0) For the first message: $(pk_1,sk_1)\gets Gen'(1^n)$ $Sign_{sk}(m_1):\sigma_1\gets Sign_{sk_0}(m_1||pk_1)$, return $\sigma_1'=(1,m_1,pk_1,\sigma_1)$ We need to remember state $\sigma_1'$ and $sk_1$ for the second message. For the second message: $(pk_2,sk_2)\gets Gen'(1^n)$ $Sign_{sk}(m_2):\sigma_2\gets Sign_{sk_1}(m_2||pk_0)$, return $\sigma_2'=(0,m_2,pk_0,\sigma_1')$ We need to remember state $\sigma_2'$ and $sk_2$ for the third message. ... For the $i$-th message: $(pk_i,sk_i)\gets Gen'(1^n)$ $Sign_{sk}(m_i):\sigma_i\gets Sign_{sk_{i-1}}(m_i||pk_{i-1})$, return $\sigma_i'=(i-1,m_i,pk_{i-1},\sigma_{i-1}')$ We need to remember state $\sigma_i'$ and $sk_i$ for the $(i+1)$-th message. $Ver_{pk}:(m_i,(i,m_i,p_k,\sigma_i,\sigma_{i-1}))$ Will need to verify all the states public keys so far. $$ Ver_{pk_0}(m_1||pk_1, \sigma_1) = \text{ Accept}\\ Ver_{pk_1}(m_2||pk_2, \sigma_2) = \text{ Accept}\\ \vdots\\ Ver_{pk_i}(m_i||pk_i, \sigma_i) = \text{ Accept} $$ Proof on homework. Drawbacks: - Signature size and verification time grows linearly with the number of messages. - Memory for signing grows linearly with the number of messages. These can be fixed. Question: Note that the signature signing message longer than the public key, which is impossible in Lamport Scheme.