# Lecture 7 ## Chapter 2: Computational Hardness ### Letter choosing experiment For 100 letter tiles, $p_1,...,p_{27}$ (with one blank) $(p_1)^2+\dots +(p_{27})^2\geq\frac{1}{27}$ For any $p_1,...,p_n$, $0\leq p_i\leq 1$. $\sum p_i=1$ $P[\text{the same event twice in a row}]=p_1^2+p_2^2....+p_n^2$ By Cauchy-Schwarz: $|u\cdot v|^2 \leq ||u||\cdot ||v||^2$. let $\vec{u}=(p_1,...,p_n)$, $\vec{v}=(1,..,1)$, so $(p_1^2+p_2^2....+p_n)^2\leq (p_1^2+p_2^2....+p_n^2)\cdot n$. So $p_1^2+p_2^2....+p_n^2\geq \frac{1}{n}$ So for an adversary $\mathcal{A}$, who random choose $x'$ and output $f(x')=f(x)$ if matched. $P[f(x)=f(x')]\geq\frac{1}{|Y|}$ So $P[x\gets f(x);y=f(x):\mathcal{A}(y,1^n)=y]\geq \frac{1}{|Y|}$ ### Modular arithmetic For $a,b\in \mathbb{Z}$, $N\in \mathbb{Z}^2$ $a\equiv b \mod N\iff N|(a-b)\iff \exists k\in \mathbb{Z}, a-b=kN,a=kN+b$ Ex: $N=23$, $-20\equiv 3\equiv 26\equiv 49\equiv 72\mod 23$. #### Equivalent relations for any $N$ on $\mathbb{Z}$ $a\equiv a\mod N$ $a\equiv b\mod N\iff b\equiv a\mod N$ $a\equiv b\mod N$ and $b\equiv c\mod N\implies a\equiv c\mod N$ #### Division Theorem For any $a\in \mathbb{Z}$, and $N\in\mathbb{Z}^+$, $\exists unique\ r,0\leq rb>0)$ $gcd(a,b)=gcd(b,a\mod b)$ ```python def euclidean_algorithm(a,b): if ab_3$, and $q_2$ in worst case is $1$, so $b_3<\frac{b_1}{2}$ $T(n)=2\Theta(\log b)=O(\log n)$ (linear in size of bits input) ##### Extended Euclidean algorithm Our goal is to find $x,y$ such that $ax+by=gcd(a,b)$ Given $a\cdot x\equiv b\mod N$, we do euclidean algorithm to find $gcd(a,b)=d$, then reverse the steps to find $x,y$ such that $ax+by=d$ ```python def extended_euclidean_algorithm(a,b): if a%b==0: return (0,1) x,y=extended_euclidean_algorithm(b,a%b) return (y,x-y*(a//b)) ``` Example: $a=12,b=43$, $gcd(12,43)=1$ $$ \begin{aligned} 43&=3\cdot 12+7\\ 12&=1\cdot 7+5\\ 7&=1\cdot 5+2\\ 5&=2\cdot 2+1\\ 2&=2\cdot 1+0\\ 1&=1\cdot 5-2\cdot 2\\ 1&=1\cdot 5-2\cdot (7-1\cdot 5)\\ 1&=3\cdot 5-2\cdot 7\\ 1&=3\cdot (12-1\cdot 7)-2\cdot 7\\ 1&=3\cdot 12-5\cdot 7\\ 1&=3\cdot 12-5\cdot (43-3\cdot 12)\\ 1&=-5\cdot 43+18\cdot 12\\ \end{aligned} $$ So $x=-5,y=18$