# Lecture 9 ## Chapter 2: Computational Hardness ### Continue on Cyclic groups $$ \begin{aligned} 107^{662}\mod 51&=(107\mod 51)^{662}\mod 51\\ &=5^{662}\mod 51 \end{aligned} $$ Remind that $\phi(p),p\in\Pi,\phi(p)=p-1$. $51=3\times 17,\phi(51)=\phi(3)\times \phi(17)=2\times 16=32$, So $5^{32}\mod 1$ $5^2\equiv 25\mod 51=25$ $5^4\equiv (5^2)^2\equiv(25)^2 \mod 51\equiv 625\mod 51=13$ $5^8\equiv (5^4)^2\equiv(13)^2 \mod 51\equiv 169\mod 51=16$ $5^16\equiv (5^8)^2\equiv(16)^2 \mod 51\equiv 256\mod 51=1$ $$ \begin{aligned} 5^{662}\mod 51&=107^{662\mod 32}\mod 51\\ &=5^{22}\mod 51\\ &=5^{16}\cdot 5^4\cdot 5^2\mod 51\\ &=19 \end{aligned} $$ For $a\in \mathbb{Z}_N^*$, the order of $a$, $o(a)$ is the smallest positive $k$ such that $a^k\equiv 1\mod N$. $o(a)\leq \phi(N),o(a)|\phi (N)$ In a general finite group $g^{|G|}=e$ (identity) $o(g)\vert |G|$ If a group $G=\{a,a^2,a^3,...,e\}$ $G$ is cyclic In a cyclic group, if $o(a)=|G|$, then a is a generator of $G$. Fact: $\mathbb{Z}^*_p$ is cyclic $|\mathbb{Z}^*_p|=p-1$, so $\exists$ generator $g$, and $\mathbb{Z}$, $\phi(\mathbb{Z}_{13}^*)=12$ For example, $2$ is a generator for $\mathbb{Z}_{13}^*$ with $2,4,8,3,6,12,11,9,5,10,7,1$. If $g$ is a generator, $f:\mathbb{Z}_p^*\to \mathbb{Z}_p^*$, $f(x)=g^x \mod p$ is onto. What type of prime $p$? - Large prime. - If $p-1$ is very factorable, that is very bad. - Pohlig-Hellman algorithm - $p=2^n+1$ only need polynomial time to invert - We want $p=2q+1$, where $q$ is prime. (Sophie Germain primes, or safe primes) There are _probably_ infinitely many safe prime and efficient to sample as well. If $p$ is safe, $g$ generator. $$ \mathbb{Z}_p^*=\{g,g^2,..,e\} $$ Then $\{g^2,...g^{2q}\}S_{g,p}\subseteq \mathbb{Z}_p^*$ is a subgroup; $g^{2k}\cdot g^{2l}=g^{2(k+l)}\in S_{g,p}$ It is cyclic with generator $g^2$. It is easy to find a generator. - Pick $a\in \mathbb{Z}_p^*$ - Let $x=a^2$. If $x\neq 1$, it is a generator of subgroup $S_p$ - $S_p=\{x,x^2,...,x^q\}\mod p$ Example: $p=2\cdot 11+1=23$ we have a subgroup with generator $4$ and $S_4=\{4,16,18,3,12,2,8,9,13,6,1\}$ ```python def get_generator(p): """ p should be a prime, or you need to do factorization """ g=[] for i in range(2,p-1): k=i sg=[] step=p while k!=1 and step>0: if k==0: raise ValueError(f"Damn, {i} generates 0 for group {p}") sg.append(k) k=(k*i)%p step-=1 sg.append(1) # if len(sg)!=(p-1): continue g.append((i,[j for j in sg])) return g ``` ### (Computational) Diffie-Hellman assumption If $p$ is a randomly sampled safe prime. Denote safe prime as $\tilde{\Pi}_n=\{p\in \Pi_n:q=\frac{p-1}{2}\in \Pi_{n-1}\}$ Then $$ P\left[p\gets \tilde{\Pi_n};a\gets\mathbb{Z}_p^*;g=a^2\neq 1;x\gets \mathbb{Z}_q;y=g^x\mod p:\mathcal{A}(y)=x\right]\leq \epsilon(n) $$ $p\gets \tilde{\Pi_n};a\gets\mathbb{Z}_p^*;g=a^2\neq 1$ is the function condition when we do the encryption on cyclic groups. Notes: $f:\Z_q\to \mathbb{Z}_p^*$ is one-to-one, so $f(\mathcal{A}(y))\iff \mathcal{A}(y)=x$