# CSE559A Lecture 18 ## Continue on Harris Corner Detector Goal: Descriptor distinctiveness - We want to be able to reliably determine which point goes with which. - Must provide some invariance to geometric and photometric differences. Harris corner detector: > Other existing variants: > - Hessian & Harris: [Beaudet '78], [Harris '88] > - Laplacian, DoG: [Lindeberg '98], [Lowe 1999] > - Harris-/Hessian-Laplace: [Mikolajczyk & Schmid '01] > - Harris-/Hessian-Affine: [Mikolajczyk & Schmid '04] > - EBR and IBR: [Tuytelaars & Van Gool '04] > - MSER: [Matas '02] > - Salient Regions: [Kadir & Brady '01] > - Others… ### Deriving a corner detection criterion - Basic idea: we should easily recognize the point by looking through a small window - Shifting a window in any direction should give a large change in intensity Corner is the point where the intensity changes in all directions. Criterion: Change in appearance of window $W$ for the shift $(u,v)$: $$ E(u,v) = \sum_{x,y\in W} [I(x+u,y+v) - I(x,y)]^2 $$ First-order Taylor approximation for small shifts $(u,v)$: $$ I(x+u,y+v) \approx I(x,y) + I_x u + I_y v $$ plug into $E(u,v)$: $$ \begin{aligned} E(u,v) &= \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2 \\ &\approx \sum_{(x,y)\in W} [I(x,y) + I_x u + I_y v - I(x,y)]^2 \\ &= \sum_{(x,y)\in W} [I_x u + I_y v]^2 \\ &= \sum_{(x,y)\in W} [I_x^2 u^2 + 2 I_x I_y u v + I_y^2 v^2] \end{aligned} $$ Consider the second moment matrix: $$ M = \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}=\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} $$ If either $a$ or $b$ is small, then the window is not a corner.