# Lecture 4 ## Review 1. Let $F$ be a field. Let $a,b,c,...,z\in F$ . Using he field axioms, simplify $$ (x-a)(x-b)(x-c)...(x-z) $$ $x\in F$, it must be at least one $0$ in the product... 2. Suppose $A,B\subset\mathbb{R}$. Suppose $A$ and $B$ are nonempty and bounded above,$A\subset B$. WHat can you say about $\sup A$ and $\sup B$? Please justify. $$ \forall x\in A, x\in B. sup\ A\leq sup\ B $$ Any UB of $B$ is also an UB of $A$. $sup\ B$ is an UB of $B$ by def $sup\ B$ is an UB of $A$ ## Continue ### Archimedean property (Archimedean property) If $x,y\in \mathbb{R}$ and $x>0$, then $\exists n\in \mathbb{N}$ such that $nx>y$.
Proof Suppose the property is false, then $\exist x,y\in \mathbb{R}$ with $x>0$ such that $\forall v\in \mathbb{N}$, nx\leq y$ Let $A=\{nx:n\in\mathbb{N}\}$. Then $A\neq\phi$ (Since $x\in A$) and $A$ is bounded above by $y$. Since $\mathbb{R}$ has LUBP, $sup\ A$ exists. Let $\alpha=\sup A$. $x>0\implies \alpha-x<\alpha$, $\alpha-x$ is not an upper bound of $A$. (Since $\alpha$ is the LUB of $A$) $\implies \exist m\in \mathbb{N}$ such that $mx>\alpha-x$ by definition of $A$. This implies $(m+1)x>\alpha$ Since $(m+1)x\in \alpha$, this contradicts the fact that $\alpha$ is an upper bound of $A$.
### $\mathbb{Q}$ is dense in $\mathbb{R}$ $\mathbb{Q}$ is dense in $\mathbb{R}$ if $x,y\in \mathbb{R}$ and $x Proof Let $x,y\in\mathbb{R}$, with $x1$, and $\exist m_1\in \mathbb{N}$ such that $m_1\cdot 1>nx$, $\exist m_2\in \mathbb{N}$ such that $m_2\cdot 1>-nx$. So $-m_21+nx\geq 1+(m-1)=m$ ### $\sqrt{2}\in \mathbb{R}$, $(\sqrt[n]{x}\in\mathbb{R})$ Notation $\mathbb{R}_{>0}$= the set of positive numbers. #### Theorem 1.21 $\forall x\in \mathbb{R}_{>0},\forall n\in \mathbb{N},\exist$ unique $y\in \mathbb{R}_{>0}$ such that $y^n=x$. (Because of this Theorem we can define $x^{1/x}=y$ and $\sqrt{x}=y$) Proof: We cna assume $n\geq 2$ (For $n=1,y=x$) Step 1 (uniqueness): If $00}: t^n0$ such that $(y+h)^n