# Math4121 Lecture 6 ## Chapter 6: Riemann-Stieltjes Integral > A nice point to restart your learning, LOL. ### Differentiation and existence of the integral #### Definition 6.1 Let $[a,b]\subseteq \mathbb{R}$. A partition of $[a,b]$ is a finite sequence of points $\{x_0,x_1,\cdots,x_n\}\subseteq [a,b]$ such that $x_0 Damn, that's a really loooong definition. #### Definition 6.3 A partition $P^*$ is called a **refinement** of $P$ if $P\subseteq P^*$. Given two partitions $P_1$ and $P_2$, we define their common refinement $P^*=P_1\cup P_2$. _we can merge two partitions by adding all points in both partitions._ #### Theorem 6.4 If $P^*$ is a refinement of $P$, then $$ L(P^*,f,\alpha)\geq L(P,f,\alpha) $$ _Refinement of a partition will never make the lower sum smaller._ $$ U(P^*,f,\alpha)\leq U(P,f,\alpha) $$ _Refinement of a partition will never make the upper sum larger._ Proof: Main idea: Let $P=P_0\subset P_1\subset P_2\subset \cdots \subset P_K=P^*$. Where $P_k$ has more points than $P_{k-1}$. It suffices to show that $L(P_k,f,\alpha)\geq L(P_{k-1},f,\alpha)$ for all $k=1,2,\cdots,K$. Let $P_{k-1}=\{y_0,y_1,\cdots,y_J\}$ and $P_k=\{y_0,y_1,\cdots,y_{j-1},y^*,y_j,\cdots,y_J\}$. Then, since $\alpha$ is monotone increasing, we have $y_{j-1}\leq y^*\leq y_j$. $$ \begin{aligned} L(P_k,f,\alpha)-L(P_{k-1},f,\alpha)&=\sum_{i=1}^{j+1}\inf_{x\in [y_{i-1},y_i]}f(x)(\alpha(y_i)-\alpha(y_{i-1}))-\sum_{i=1}^j\inf_{x\in [y_{i-1},y_i]}f(x)(\alpha(y_i)-\alpha(y_{i-1}))\\ &=\inf_{x\in [y^*,y_j]}f(x)(\alpha(y_j)-\alpha(y^*))+\inf_{x\in [y_{j-1},y^*]}f(x)(\alpha(y^*)-\alpha(y_{j-1}))-\inf_{x\in [y_{j-1},y_j]}f(x)(\alpha(y_j)-\alpha(y_{j-1}))\\ &\geq m_j(\alpha(y_j)-\alpha(y^*))+m_j(\alpha(y^*)-\alpha(y_{j-1}))-m_{j-1}(\alpha(y_j)-\alpha(y_{j-1}))\\ &=0 \end{aligned} $$ Same for $U(P_k,f,\alpha)\geq U(P_{k-1},f,\alpha)$. QED #### Theorem 6.5 $$ \underline{\int_a^b}f(x)d\alpha\leq \overline{\int_a^b}f(x)d\alpha $$ Proof: Let $P^*$ be a common refinement of $P_1$ and $P_2$. By **Theorem 6.4**, we have $$ L(P_1,f,\alpha)\leq L(P^*,f,\alpha)\leq U(P^*,f,\alpha)\leq U(P_2,f,\alpha) $$ Fixing $P_1$ and take the supremum over all $P_2$, we have $$ \underline{\int_a^b}f(x)d\alpha\leq \sup_{P_1}L(P_1,f,\alpha)\leq \inf_{P_2}U(P_2,f,\alpha)=\overline{\int_a^b}f(x)d\alpha $$ QED