# Math4201 Topology I (Lecture 14)
## Metric topology
### Product topology and metric topology
If $X$ and $Y$ are metrizable spaces, then the product space $X\times Y$ is metrizable.
If $X$ is metrizable, then the subspace $A\subset X$ equipped with subspace topology is metrizable.
Proof
Let $d$ be a metric on $X$. Then define $d'$ be the restriction of $d$ to $A$:
$$
d':A\times A\to \mathbb{R}+
$$
$$
d'(x,y)=d(x,y)
$$
$x,y\in A\subseteq X$
$d'$ is a metric on $A$. Since the metric topology on $A$ associated to $d'$ is the same as the subspace topology.
Note that for any $x\in A$ and $r>0$
$$
B_r^{d}(x)\cap A=B_r^{d'}(x)\tag{*}
$$
A basis for metric topology on $A$ is given by:
$$
\mathcal{B}=\{B_r^{d'}(x)|x\in A,r>0,r\in \mathbb{R}\}
$$
A basis for the subspace topology on $A$ is given by:
$$
\mathcal{B}'=\{B_r^{d}(x)\cap A|x\in A,r>0,r\in \mathbb{R}\}
$$
Since (*) holds, $\mathcal{B}\subseteq \mathcal{B}'$.
This shows that subspace topology on $A$ is finer than the metric topology on $A$.
We need to show that for any $B_r^{d}(x)$ with $x\in X$ and $y\in B_r^{d}(x)\cap A$, we have $r'>0$ such that $y\in B_r^{d'}(y)\subseteq B_r^{d}(x)\cap A$.
Use triangle inequality, we have $r'=r-d(x,y)>0$ such that $y\in B_r^{d'}(y)\subseteq B_r^{d}(x)\cap A$.
#### Proposition on sequence and closure
Let $X$ be a topological space and $A\subseteq X$. Then the following holds:
If there is a sequence $\{x_n\}_{n=1}^\infty$ such that $x_n\in A$ and $x_n\to x$, then $x\in \overline{A}$. ($x$ may not be in $A$)
The reverse holds if $X$ is a metric space. That is, if $X$ is a metric space and $x\in \overline{A}$, then there is a sequence $\{x_n\}_{n=1}^\infty$ such that $x_n\in A$ and $x_n\to x$.
Example of non-metrizable space
For the second part of the claim
Let $X=\mathbb{R}\times \mathbb{R}\times \mathbb{R}\times \cdots$ with the product topology over infinite product.
$X=\text{Map}(\mathbb{N},\mathbb{R})=\{(x_1,x_2,x_3,\cdots)|x_i\in \mathbb{R},i\in \mathbb{N}\}$.
The box topology on $X$ is the topology generated by:
$$
\mathcal{B}=\{(a_1,b_1)\times (a_2,b_2)\times (a_3,b_3)\times \cdots|a_i,b_i\in \mathbb{R},i\in \mathbb{N}\}
$$
It is easy to check that this is a basis.
Take $A=\mathbb{R}^{> 0}\times \mathbb{R}^{> 0}\times \mathbb{R}^{> 0}\times \cdots=\{(x_1,x_2,x_3,\cdots)|x_i> 0\}$.
$\overline{A}=\mathbb{R}^{\geq 0}\times \mathbb{R}^{\geq 0}\times \mathbb{R}^{\geq 0}\times \cdots=\{(x_1,x_2,x_3,\cdots)|x_i\geq 0\}$.
In particular, $(0,0,0,\cdots)\in \overline{A}$
Take a basis element $B=(a_1,b_1)\times (a_2,b_2)\times (a_3,b_3)\times \cdots\in \mathcal{B}$ containing $(0,0,0,\cdots)$. This means that $a_i<00$ for all $i\in \mathbb{N}$.
Consider the following open set around $(0,0,0,\cdots)$:
$C=(-\frac{a_1^1}{2},\frac{a_1^1}{2})\times (-\frac{a_2^1}{2},\frac{a_2^1}{2})\times (-\frac{a_3^1}{2},\frac{a_3^1}{2})\times \cdots$
We claim that $v_n\notin C$. Otherwise, we should have $-\frac{a_i^j}{2}