# CSE510 Deep Reinforcement Learning (Lecture 13) > Recap from last lecture > > For any differentiable policy $\pi_\theta(s,a)$, for any o the policy objective functions $J=J_1, J_{avR}$ or $\frac{1}{1-\gamma} J_{avV}$ > > The policy gradient is > > $\nabla_{\theta}J(\theta)=\mathbb{E}_{\pi_{\theta}}\left[\nabla_\theta \log \pi_\theta(s,a)Q^{\pi_\theta}(s,a)\right]$ ## Problem for policy gradient method Data Inefficiency - On-policy method: for each new policy, we need to generate a completely new trajectory - The data is thrown out after just one gradient update - As complex neural networks need many updates, this makes the training process very slow Unstable update: step size is very important - If step size is too large: - Large step -> bad policy - Next batch is generated from current bad policy → collect bad samples - Bad samples -> worse policy (compare to supervised learning: the correct label and data in the following batches may correct it) - If step size is too small: the learning process is slow ## Deriving the optimization objection function of Trusted Region Policy Optimization (TRPO) ### Objective of Policy Gradient Methods Policy Objective $$ J(\pi_\theta)=\mathbb{E}_{\tau\sim \pi_theta}\sum_{t=0}^{\infty} \gamma^t r^t $$ here $\tau$ is the trajectory for the policy $\pi_\theta$. Policy objective can be written in terms of old one: $$ J(\pi_{\theta'})-J(\pi_{\theta})=\mathbb{E}_{\tau \sim \pi_{\theta'}}\sum_{t=0}^{\infty}\gamma^t A^{\pi_\theta}(s_t,a_t) $$ Equivalently for succinctness: $$ J(\pi')-J(\pi)=\mathbb{E}_{\tau\in \pi'}\sum_{t=0}^{\infty} A^{\pi}(s_t,a_t) $$
Proof $$ \begin{aligned} &\mathbb{E}_{\tau\sim \pi'}\left[\gamma^t A^{\pi_\theta}(s_t,a_t)\right]\\ &=E_{\tau\sim \pi'}\left[\sum_{t=0}^{\infty}\gamma^t R(s_0)+\sum_{t=0}^{\infty} \gamma^{t+1}V^{\pi}(s_{t+1})-\sum_{t=0}^{\infty} \gamma^{t}V^\pi(s_t)\right]\\ &=J(\pi')+\sum_{t=1}^{\infty} \gamma^{t}V^{\pi}(s_t)-\sum_{t=0}^{\infty} \gamma^{t}V^\pi(s_t)\\ &=J(\pi')-\mathbb{E}_{\tau\sim\pi'}V^{\pi}(s_0)\\ &=J(\pi')-J(\pi) \end{aligned} $$
### Importance Sampling Estimate one distribution by sampling form anther distribution $$ \begin{aligned} \mathbb{E}_{x\sim p}[f(x)]&=\int f(x)p(x)dx &=\int f(x)\frac{p(x)}{q(x)}q(x)dx\\ &=\mathbb{E}_{x\sim q}\left[f(x)\frac{p(x)}{q(x)}\right]\\ &\approx \frac{1}{N}\sum_{i=1,x^i\in q}^N f(x^i)\frac{p(x^i)}{q(x^i)} \end{aligned} $$ ### Estimating objective with importance sampling Discounted state visit distribution: $$ d^\pi(s)=(1-\gamma)\sum_{t=0}^{\infty}\gamma^t P(s_t=s|\pi) $$ $$ \begin{aligned} J(\pi')-J(\pi)&=\mathbb{E}_{\tau\sim\pi'}\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t,a_t)\\ &=\mathbb{E}_{s\sim d^{\pi'}, a\sim \pi'} A^{\pi}(s,a)\\ &=\mathbb{E}_{s\sim d^{\pi'}, a\sim \pi}\left[A^{\pi'}(s,a)\frac{\pi'(a|s)}{\pi(a|s)}\right]\\ \end{aligned} $$ Using the old policy to sample states form a policy that we are trying to optimize. $$ L_\pi(\pi')=\mathbb{E}_{s\sim d^{\pi'}, a\sim \pi}\left[A^{\pi'}(s,a)\frac{\pi'(a|s)}{\pi(a|s)}\right] $$ ### Lower bound of Optimization > [!NOTE] > > (Kullback-Leibler) KL divergence is a measure of the difference between two probability distributions. > > $D_{KL}(\pi(\dot|s)||\pi'(\dot|s))=\int_s \pi(a|s)\log \frac{\pi(a|s)}{\pi'(a|s)}da$ $$ J(\pi')-J(\pi)\geq L_\pi(\pi')-C\max_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s)) $$ where $C$ is a constant. Optimizing the objective function: $$ \max_{\pi'} J(\pi')-J(\pi) $$ By maximizing the lower bound $$ \max_{\pi'} L_\pi(\pi')-C\max_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s)) $$ ### Monotonic Improvement Theorem Proof of improvement guarantee: Suppose $\pi_{k+1}$ and $\pi_k$ are related by $$ \pi_{k+1}=\max_{\pi'} L_\pi(\pi')-C\max_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s)) $$ $\pi_{k}$ is a feasible point, and the objective at $\pi_k$ is equal to 0. $$ L_{\pi_k}(\pi_{k})\propto \mathbb{E}_{s,a\sim d^{\pi_k}}[A^{\pi_k}(s,a)]=0 $$ $$ D_{KL}(\pi_k||\pi_k)[s]=0 $$ Optimal value $\geq 0$. By the performance bound, $J_{pi_{k+1}}-J_{pi_k}\geq 0$. ### Final objective function $$ \max_{\pi'}\mathbb{E}_{s\sim d^{\pi}, a\sim \pi}[A^{\pi'}(s,a)\frac{\pi'(a|s)}{\pi(a|s)}]-C\max_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s)) $$ by approximation $$ \max_{\pi'}\mathbb{E}_{s\sim d^{\pi}, a\sim \pi}[A^{\pi'}(s,a)\frac{\pi'(a|s)}{\pi(a|s)}]-C\mathbb{E}_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s)) $$ With the Lagrangian Duality, the objective is mathematically the same as following using a trust region constraint: $$ \max_{\pi'} L_\pi(\pi') $$ such that $$ \mathbb{E}_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s))\leq \delta $$ $C$ gets very high when $\gamma$ is close to one and the corresponding gradient step size becomes too small. $$ C\propto \frac{\epsilon \gamma}{(1-\gamma)^2} $$ - Empirical results show that it needs to more adaptive - But Tuning $C$ is hard (need some trick just like PPO) - TRPO uses trust region constraint and make $\delta$ a tunable hyperparameter. ## Trust Region Policy Optimization (TRPO) $$ \max_{\pi'} L_\pi(\pi') $$ such that $$ \mathbb{E}_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s))\leq \delta $$ Make linear approximation to $L_{\pi_{\theta_{old}}}$ and quadratic approximation to KL term. Maximize $g\cdot(\theta-\theta_{old})-\frac{\beta}{2}(\theta-\theta_{old})^\top F(\theta-\theta_{old})$ where $g=\frac{\partial}{\partial \theta}L_{\pi_{\theta_{old}}}(\pi_{\theta})\vert_{\theta=\theta_{old}}$ and $F=\frac{\partial^2}{\partial \theta^2}\overline{KL}_{\pi_{\theta_{old}}}(\pi_{\theta})\vert_{\theta=\theta_{old}}$
Taylor Expansion of KL Term $$ D_{KL}(\pi_{\theta_{old}}|\pi_{\theta})\approx D_{KL}(\pi_{\theta_{old}}|\pi_{\theta_{old}})+d^\top \nabla_\theta D_{KL}(\pi_{\theta_{old}}|\pi_{\theta})\vert_{\theta=\theta_{old}}+\frac{1}{2}d^\top \nabla_\theta^2 D_{KL}(\pi_{\theta_{old}}|\pi_{\theta})\vert_{\theta=\theta_{old}}d $$ $$ \begin{aligned} \nabla_\theta D_{KL}(\pi_{\theta_{old}}|\pi_{\theta})&=-\nabla_\theta \mathbb{E}_{x\sim \pi_{\theta_{old}}}\log P_\theta(x)\vert_{\theta=\theta_{old}}\\ &=-\mathbb{E}_{x\sim \pi_{\theta_{old}}}\nabla_\theta \log P_\theta(x)\vert_{\theta=\theta_{old}}\\ &=-\mathbb{E}_{x\sim \pi_{\theta_{old}}}\frac{1}{\pi_{\theta_{old}}(x)}\nabla_\theta P_\theta(x)\vert_{\theta=\theta_{old}}\\ &=\int_x P_{\theta_{old}}(x)\frac{1}{P_{\theta_{old}}(x)}\nabla_\theta P_\theta(x)\vert_{\theta=\theta_{old}} dx\\ &=\int_x P_{\theta_{old}}(x)\nabla_\theta P_\theta(x)\vert_{\theta=\theta_{old}} dx\\ &=\nabla_\theta \int_x P_{\theta_{old}}(x) \vert_{\theta=\theta_{old}} dx\\ &=0 \end{aligned} $$ $$ \begin{aligned} \nabla_\theta^2 D_{KL}(\pi_{\theta_{old}}|\pi_{\theta})\vert_{\theta=\theta_{old}}&=-\mathbb{E}_{x\sim \pi_{\theta_{old}}}\nabla_\theta^2 \log P_\theta(x)\vert_{\theta=\theta_{old}}\\ &=-\mathbb{E}_{x\sim \pi_{\theta_{old}}}\nabla_\theta \left(\frac{\nabla_\theta P_\theta(x)}{P_\theta(x)}\right)\vert_{\theta=\theta_{old}}\\ &=-\mathbb{E}_{x\sim \pi_{\theta_{old}}}\left(\frac{\nabla_\theta^2 P_\theta(x)-\nabla_\theta P_\theta(x)\nabla_\theta P_\theta(x)^\top}{P_\theta(x)^2}\right)\vert_{\theta=\theta_{old}}\\ &=-\mathbb{E}_{x\sim \pi_{\theta_{old}}}\left(\frac{\nabla_\theta^2 P_\theta(x)\vert_{\theta=\theta_{old}}}P_{\theta_{old}}(x)\right)+\mathbb{E}_{x\sim \pi_{\theta_{old}}}\left(\nabla_\theta \log P_\theta(x)\nabla_\theta \log P_\theta(x)^\top\right)\vert_{\theta=\theta_{old}}\\ &=\mathbb{E}_{x\sim \pi_{\theta_{old}}}\nabla_\theta\log P_\theta(x)\nabla_\theta\log P_\theta(x)^\top\vert_{\theta=\theta_{old}}\\ \end{aligned} $$