# CSE510 Deep Reinforcement Learning (Lecture 19) ## Model learning with high-dimensional observations - Learning model in a latent space with observation reconstruction - Learning model in a latent space without reconstruction ### Learn in Latent Space: Dreamer Learning embedding of images & dynamics model (jointly) ![Dreamer](https://notenextra.trance-0.com/CSE510/Dreamer.png) Representation model: $p_\theta(s_t|s_{t-1}, a_{t-1}, o_t)$ Observation model: $q_\theta(o_t|s_t)$ Reward model: $q_\theta(r_t|s_t)$ Transition model: $q_\theta(s_t| s_{t-1}, a_{t-1})$. Variational evidence lower bound (ELBO) objective: $$ \mathcal{J}_{REC}\doteq \mathbb{E}_{p}\left(\sum_t(\mathcal{J}_O^t+\mathcal{J}_R^t+\mathcal{J}_D^t)\right) $$ where $$ \mathcal{J}_O^t\doteq \ln q(o_t|s_t) $$ $$ \mathcal{J}_R^t\doteq \ln q(r_t|s_t) $$ $$ \mathcal{J}_D^t\doteq -\beta \operatorname{KL}(p(s_t|s_{t-1}, a_{t-1}, o_t)||q(s_t|s_{t-1}, a_{t-1})) $$ #### More versions for Dreamer Latest is V3, [link to the paper](https://arxiv.org/pdf/2301.04104) ### Learn in Latent Space - Pros - Learn visual skill efficiently (using relative simple networks) - Cons - Using autoencoder might not recover the right representation - Not necessarily suitable for model-based methods - Embedding is often not a good state representation without using history observations ### Planning with Value Prediction Network (VPN) Idea: generating trajectories by following $\epsilon$-greedy policy based on the planning method Q-value calculated from $d$-step planning is defined as: $$ Q_\theta^d(s,o)=r+\gamma V_\theta^{d}(s') $$ $$ V_\theta^{d}(s)=\begin{cases} V_\theta(s) & \text{if } d=1\\ \frac{1}{d}V_\theta(s)+\frac{d-1}{d}\max_{o} Q_\theta^{d-1}(s,o)& \text{if } d>1 \end{cases} $$ ![VPN](https://notenextra.trance-0.com/CSE510/VPN.png) Given an n-step trajectory $x_1, o_1, r_1, \gamma_1, x_2, o_2, r_2, \gamma_2, ..., x_{n+1}$ generated by the $\epsilon$-greedy policy, k-step predictions are defined as follows: $$ s_t^k=\begin{cases} f^{enc}_\theta(x_t) & \text{if } k=0\\ f^{trans}_\theta(s_{t-1}^{k-1},o_{t-1}) & \text{if } k>0 \end{cases} $$ $$ v_t^k=f^{value}_\theta(s_t^k) $$ $$ r_t^k,\gamma_t^k=f^{out}_\theta(s_t^{k-1},o_t) $$ $$ \mathcal{L}_t=\sum_{l=1}^k(R_t-v_t^l)^2+(r_t-r_t^l)^2+(\gamma_t-\gamma_t^l)^2\text{ where } R_t=\begin{cases} r_t+\gamma_t R_{t+1} & \text{if } t\leq n\\ \max_{o} Q_{\theta-}^d(s_{n+1},o)& \text{if } t=n+1 \end{cases} $$ ### MuZero beats AlphaZero