# CSE5313 Coding and information theory for data science (Lecture 2) ## Review on Channel coding Let $F$ be the input alphabet, $\Phi$ be the output alphabet. e.g. $F=\{0,1\},\mathbb{R}$. Introduce noise: $\operatorname{Pr}(c'\text{ received}|c\text{ transmitted})$. We use $u$ to denote the information to be transmitted $c$ to be the codeword. $c'$ is the received codeword. given to the decoder. $u'$ is the decoded information word. Error if $u' \neq u$. Example: **Binary symmetric channel (BSC)** $F=\Phi=\{0,1\}$ Every bit of $c$ is flipped with probability $p$. **Binary erasure channel (BEC)** $F=\Phi=\{0,1,*\}$, very common in practice when we are unsure when the bit is transmitted. $c$ is transmitted, $c'$ is received. $c'$ is $c$ with probability $1-p$, $e$ with probability $p$. ## Encoding Encoding $E$ is a function from $F^k$ to $F^n$. Where $E(u)=c$ is the codeword. Assume $n\geq k$, we don't compress the information. A code $\mathcal{C}$ is a subset of $F^n$. Encoding is a one to one mapping from $F^k$ to $\mathcal{C}$. In practice, we usually choose $\mathcal{C}\subseteq F^n$ to be the size of $F^k$. ## Decoding $D$ is a function from $\Phi^n$ to $\mathcal{C}$. $D(c')=\hat{c}$ The decoder then outputs the unique $u'$ such that $E(u')=\hat{c}$. Our aim is to have $u=u'$. Decoding error probability: $\operatorname{P}_{err}=\max_{c\in \mathcal{C}}\operatorname{P}_{err}(c)$. where $\operatorname{P}_{err}(c)=\sum_{y|D(y)\neq c}\operatorname{Pr}(y\text{ received}|c\text{ transmitted})$. Our goal is to construct decoder $D$ such that $\operatorname{P}_{err}$ is bounded. Example: Repetition code in binary symmetric channel: Let $F=\Phi=\{0,1\}$. Every bit of $c$ is flipped with probability $p$. Say $k=1$, $n=3$ and let $\mathcal{C}=\{000,111\}$. Let the encoder be $E(u)=u u u$. The decoder is $D(000)=D(100)=D(010)=D(001)=0$, $D(110)=D(101)=D(011)=D(111)=1$. Exercise: Compute the error probability of the repetition code in binary symmetric channel.
Solution Recall that $P_{err}(c)=\sum_{y|D(y)\neq c}\operatorname{Pr}(y\text{ received}|c\text{ transmitted})$. Use binomial random variable: $$ \begin{aligned} P_{err}(000)&=\sum_{y|D(y)\neq 000}\operatorname{Pr}(y\text{ received}|000\text{ transmitted})\\ &=\operatorname{Pr}(2\text{ flipes or more})\\ &=\binom{n}{2}p^2(1-p)+\binom{n}{3}p^3\\ &=3p^2(1-p)+p^3\\ \end{aligned} $$ The computation is identical for $111$. $P_{err}=\max\{P_{err}(000),P_{err}(111)\}=P_{err}(000)=3p^2(1-p)+p^3$.
### Maximum likelihood principle For $p\leq 1/2$, the last example is maximum likelihood decoder. Notice that $\operatorname{Pr}(c'=000|c=000)=(1-p)^3$ and $\operatorname{Pr}(c'=000|c=111)=p^3$. - If $p\leq 1/2$, then $(1-p)^3\geq p^3$. $c=000$ is more likely to be transmitted than $c=111$. When $\operatorname{Pr}(c'=001|c=000)=(1-p)^2p$ and $\operatorname{Pr}(c'=001|c=111)=p^2(1-p)$. - If $p\leq 1/2$, then $(1-p)^2p\geq p^2(1-p)$. $c=001$ is more likely to be transmitted than $c=110$. For $p>1/2$, we just negate the above. In general, Maximum likelihood decoder is $D(c')=\arg\max_{c\in \mathcal{C}}\operatorname{Pr}(c'\text{ received}|c\text{ transmitted})$. ## Defining a "good" code Two metrics: - How many redundant bits are needed? - e.g. repetition code: $k=1$, $n=3$ sends $2$ redundant bits. - What is the resulting error probability? - Depends on the decoding function. - Normally, maximum likelihood decoding is assumed. - Should go zero with $n$. ### Definition for rate of code is $\frac{k}{n}$. More generally, $\log_{|F|}\frac{|\mathcal{C}|}{n}$. ### Definition for information entropy Let $X$ be a random variable over a discrete set $\mathcal{X}$. - That is every $x\in \mathcal{X}$ has a probability $\operatorname{Pr}(X=x)$. The entropy $H(X)$ of a discrete random variable $X$ is defined as: $$ H(X)=\mathbb{E}_{x\sim X}{\log \frac{1}{\operatorname{Pr}(x)}}=-\sum_{x\in \mathcal{X}}\operatorname{Pr}(x)\log \operatorname{Pr}(x) $$ when $X=Bernouili(p)$, we denote $H(X)=H(p)=-p\log p-(1-p)\log (1-p)$. A deeper explanation will be given in the later in the course. ## Which rate are possible? Claude Shannon '48: Coding theorem of the BSC(binary symmetric channel) Recall $r=\frac{k}{n}$. Let $H(\cdot)$ be the entropy function. For every $0\leq r<1-H(p)$, - There exists $\mathcal{C}_1, \mathcal{C}_2,\ldots$ of rates $r_1,r_2,\ldots$ lengths $n_1,n_2,\ldots$ and $r_i\geq r$. - That with Maximum likelihood decoding satisifies $P_{err}\to 0$ as $i\to \infty$. For any $R\geq 1-H(p)$, - Any sequence $\mathcal{C}_1, \mathcal{C}_2,\ldots$ of rates $r_1,r_2,\ldots$ lengths $n_1,n_2,\ldots$ and $r_i\geq R$, - Any andy decoding algorithm, $P_{err}\to 1$ as $i\to \infty$. $1-H(p)$ is the capacity of the BSC. - Informally, the capacity is the best possible rate of the code (asymptotically). - A special case of a broader theorem (Shannon's coding theorem). - We will see later in this course. Polar codes, for explicit construction of codes with rate arbitrarily close to capacity. ### BSC capacity - Intuition Capacity of the binary symmetric channel with crossover probability $p=1-H(p)$. A correct decoder $c'\to c$ essentially identifies two objects: - The codeword $c$ - The error word $e=c'-c$ subtraction $\mod 2$. - $c$ and $e$ are independent of each other. A **typical** $e$ has $\approx np$ $1$'s (law of large numbers), say $n(p\pm \delta)$. Exercise: $\operatorname{Pr}(e)=p^{n(p\pm \delta)}(1-p)^{n(1-p\pm \delta)}=2^{-n(H(p)+\epsilon)}$ for some $\epsilon$ goes to zero as $n\to \infty$.
Intuition There exists $\approx 2^{n(H(p)}$ typical error words. To index those typical error words, we need $\log_2 (2^{nH(p)})=nH(p)+O(1)$. bits to identify the error word $e$. To encode the message, we need $\log_2 |\mathcal{C}|$ bits. Since we send $n$ bits, the rate is $k+nH(p)+O(1)\leq n$, so $\frac{k}{n}\leq 1-H(p)$. So the rate cannot exceed $1-H(p)$.
Formal proof $$ \begin{aligned} \operatorname{Pr}(e)&=p^{n(p\pm \delta)}(1-p)^{n(1-p\pm \delta)}\\ &=p^{np}(1-p)^{n(1-p)}p^{\pm n\delta}(1-p)^{\mp n\delta}\\ \end{aligned} $$ And $$ \begin{aligned} 2^{-n(H(p)+\epsilon)}&=2^{-n(-p\log p-(1-p)\log (1-p)+\epsilon)}\\ &=2^{np\log p}2^{n(1-p)\log (1-p)}2^{-n\epsilon}\\ &=p^{np}(1-p)^{n(1-p)}2^{-n\epsilon}\\ \end{aligned} $$ So we need to check there exists $\epsilon>0$ such that $$ \lim_{n\to \infty}p^{\pm n\delta}(1-p)^{\mp n\delta}\leq 2^{-n\epsilon} $$ Test $$ \begin{aligned} 2^{-n\epsilon}&=p^{np}(1-p)^{n(1-p)}2^{-n\epsilon}\\ -n\epsilon&=\delta n\log p-\delta n\log (1-p)\\ \epsilon&=\delta (\log (1-p)-\log p)\\ \end{aligned} $$
## Hamming distance How to quantify the noise in the channel? - Number of flipped bits. Definition of Hamming distance: - Denote $c=(c_1,c_2,\ldots,c_n)$ and $c'=(c'_1,c'_2,\ldots,c'_n)$. - $d_H(c,c')=\sum_{i=1}^n [c_i\neq c'_i]$. Minimum hamminng distance: - Let $\mathcal{C}$ be a code. - $d_H(\mathcal{C})=\min_{c_1,c_2\in \mathcal{C},c_1\neq c_2}d_H(c_1,c_2)$. Hamming distance is a metric. - $d_H(x,y)\geq 0$ equal iff $x=y$. - $d_H(x,y)=d_H(y,x)$ - Triangle inequality: $d_H(x,y)\leq d_H(x,z)+d_H(z,y)$ ### Level of error handling - error detection - erasure correction - error correction Erasure: replacement of an entry by $*\not\in F$. Error: substitution of one entry by a different one. Example: If $d_H(\mathcal{C})=d$. #### Error detection Theorem: If $d_H(\mathcal{C})=d$, then there exists $f:F^n\to \mathcal{C}\cap \{\text{"error detected"}\}$. that detects every patter of $\leq d-1$ errors correctly. - That is, we can identify if the channel introduced at most $d-1$ errors. - No decoding is needed. Idea: Since $d_H(\mathcal{C})=d$, one needs $\geq d$ errors to cause "confusion".
Proof The function $$ f(y)=\begin{cases} y\text{ if }y\in \mathcal{C}\\ \text{"error detected"} & \text{otherwise} \end{cases} $$ will only fails if there are $\geq d$ errors.
#### Erasure correction Theorem: If $d_H(\mathcal{C})=d$, then there exists $f:\{F^n\cup \{*\}\}\to \mathcal{C}\cap \{\text{"failed"}\}$. that recovers every patter of at most $d-1$ erasures. Idea: Suppose $d=4$. If $4$ erasures occurred, there might be two possible codewords $c,c'\in \mathcal{C}$. If $\leq 3$ erasures occurred, there is only one possible codeword $c\in \mathcal{C}$. #### Error correction Define the Hamming ball of radius $r$ centered at $c$ as: $$ B_H(c,r)=\{y\in F^n:d_H(c,y)\leq r\} $$ Theorem: If $d_H(\mathcal{C})\geq d$, then there exists $f:F^n\to \mathcal{C}$ that corrects every pattern of at most $\lfloor \frac{d-1}{2}\rfloor$ errors. Ideas: The ball $\{B_H(c,\lfloor \frac{d-1}{2}\rfloor)|c\in \mathcal{C}\}$ are disjoint. Use closest neighbor decoding, use triangle inequality. ## Intro to linear codes Summary: a code of minimum hamming distance $d$ can - detect $\leq d-1$ errors. - correct $\leq d-1$ erasures. - Correct $\leq \lfloor \frac{d-1}{2}\rfloor$ errors. Problems: - How to construct good codes, $k/n$ and $d$ large? - How good can these codes possibly be? - How to encode? - How to decode with noisy channel Tools - Linear algebra over finite fields. ### Linear codes Consider $F^n$ as a vector space, and let $\mathcal{C}\subseteq F^n$ be a subspace. $F,\Phi$ are finites, we use finite fields (algebraic objects that "immitate" $\mathbb{R}^n$, $\mathbb{C}^n$). Formally, satisfy the field axioms. Next Lectures: - Field axioms - Prime fields ($\mathbb{F}_p$) - Field extensions (e.g. $\mathbb{F}_{p^t}$)