# CSE559A Lecture 26 ## Continue on Geometry and Multiple Views ### The Essential and Fundamental Matrices #### Math of the epipolar constraint: Calibrated case Recall Epipolar Geometry ![Epipolar Geometry Configuration](https://notenextra.trance-0.com/CSE559A/Epipolar_geometry_setup.png) Epipolar constraint: If we set the config for the first camera as the world origin and $[I|0]\begin{pmatrix}y\\1\end{pmatrix}=x$, and $[R|t]\begin{pmatrix}y\\1\end{pmatrix}=x'$, then Notice that $x'\cdot [t\times (Ry)]=0$ $$ x'^\top E x_1 = 0 $$ We denote the constraint defined by the Essential Matrix as $E$. $E x$ is the epipolar line associated with $x$ ($l'=Ex$) $E^\top x'$ is the epipolar line associated with $x'$ ($l=E^\top x'$) $E e=0$ and $E^\top e'=0$ ($x$ and $x'$ don't matter) $E$ is singular (rank 2) and have five degrees of freedom. #### Epipolar constraint: Uncalibrated case If the calibration matrices $K$ and $K'$ are unknown, we can write the epipolar constraint in terms of unknown normalized coordinates: $$ x'^\top_{norm} E x_{norm} = 0 $$ where $x_{norm}=K^{-1} x$, $x'_{norm}=K'^{-1} x'$ $$ x'^\top_{norm} E x_{norm} = 0\implies x'^\top_{norm} Fx=0 $$ where $F=K'^{-1}EK^{-1}$ is the **Fundamental Matrix**. $$ (x',y',1)\begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}\begin{pmatrix} x\\y\\1 \end{pmatrix}=0 $$ Properties of $F$: $F x$ is the epipolar line associated with $x$ ($l'=F x$) $F^\top x'$ is the epipolar line associated with $x'$ ($l=F^\top x'$) $F e=0$ and $F^\top e'=0$ $F$ is singular (rank two) and has seven degrees of freedom #### Estimating the fundamental matrix Given: correspondences $x=(x,y,1)^\top$ and $x'=(x',y',1)^\top$ Constraint: $x'^\top F x=0$ $$ (x',y',1)\begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}\begin{pmatrix} x\\y\\1 \end{pmatrix}=0 $$ **Each pair of correspondences gives one equation (one constraint)** At least 8 pairs of correspondences are needed to solve for the 9 elements of $F$ (The eight point algorithm) We know $F$ needs to be singular/rank 2. How do we force it to be singular? Solution: take SVD of the initial estimate and throw out the smallest singular value $$ F=U\begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{bmatrix}V^\top $$ ## Structure from Motion Not always uniquely solvable. If we scale the entire scene by some factor $k$ and, at the same time, scale the camera matrices by the factor of $1/k$, the projections of the scene points remain exactly the same: $x\cong PX =(1/k P)(kX)$ Without a reference measurement, it is impossible to recover the absolute scale of the scene! In general, if we transform the scene using a transformation $Q$ and apply the inverse transformation to the camera matrices, then the image observations do not change: $x\cong PX =(P Q^{-1})(QX)$ ### Types of Ambiguities ![Ambiguities in projection](https://notenextra.trance-0.com/CSE559A/Ambiguities_in_projection.png) ### Affine projection : more general than orthographic A general affine projection is a 3D-to-2D linear mapping plus translation: $$ P=\begin{bmatrix} a_{11} & a_{12} & a_{13} & t_1 \\ a_{21} & a_{22} & a_{23} & t_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}=\begin{bmatrix} A & t \\ 0^\top & 1 \end{bmatrix} $$ In non-homogeneous coordinates: $$ \begin{pmatrix} x\\y\\1 \end{pmatrix}=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}\begin{pmatrix} X\\Y\\Z \end{pmatrix}+\begin{pmatrix} t_1\\t_2 \end{pmatrix}=AX+t $$ ### Affine Structure from Motion Given: 𝑚 images of 𝑛 fixed 3D points such that $$ x_{ij}=A_iX_j+t_i, \quad i=1,\dots,m, \quad j=1,\dots,n $$ Problem: use the 𝑚𝑛 correspondences $x_{ij}$ to estimate 𝑚 projection matrices $A_i$ and translation vectors $t_i$, and 𝑛 points $X_j$ The reconstruction is defined up to an arbitrary affine transformation $Q$ (12 degrees of freedom): $$ \begin{bmatrix} A & t \\ 0^\top & 1 \end{bmatrix}\rightarrow\begin{bmatrix} A & t \\ 0^\top & 1 \end{bmatrix}Q^{-1}, \quad \begin{pmatrix}X_j\\1\end{pmatrix}\rightarrow Q\begin{pmatrix}X_j\\1\end{pmatrix} $$ How many constraints and unknowns for $m$ images and $n$ points? $2mn$ constraints and $8m + 3n$ unknowns To be able to solve this problem, we must have $2mn \geq 8m+3n-12$ (affine ambiguity takes away 12 dof) E.g., for two views, we need four point correspondences