# Math4201 Topology I (Lecture 37) ## Separation Axioms ### Normal spaces #### Proposition of normal spaces A topological space $X$ is normal if and only if for all $A\subseteq U$ closed and $U$ is open in $X$, there exists $V$ open such that $A\subseteq V\subseteq \overline{V}\subseteq U$. #### Urysohn lemma Let $X$ be a normal space, $A,B$ be two closed and disjoint set in $X$, then there exists continuous function $f:X\to[0,1]$ such that $f(A)=\{0\}$ and $f(B)=\{1\}$. We say $f$ separates $A$ and $B$. > [!NOTE] > > We could replace $1,0$ to any $a Proof Step 1: Consider the rationals in $[0,1]$. Let $P=[0,1]\cap \mathbb{Q}$. This set is countable. First we want to prove that there exists a set of open sets $\{U_p\}_{p\in P}$ such that if $p1$, $U_p=X$. Otherwise we use the $p$ in $P$. Step 3: $\forall x\in X$, set $\mathbb{Q}(x)=\{p\in \mathbb{Q}:x\in U_p\}\subseteq [0,\infty)$. This function has a lower bound and $f(x)=\inf\mathbb{Q}(x)$. Observe that $A\subseteq U_p,\forall p$ and $f(A)=\inf(0,\infty)=\{0\}$. $\forall b\in B$, $b\in U_p$ if and only if $p>1$, so $f(b)=\inf(1,\infty)=1$. Suppose $x\in \overline{U_r}$, then $x\in U_s,\forall s