# Math416 Lecture 16 ## Answer checking for exam ### Q1 Cauchy riemann equations: $$ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}\quad\text{and}\quad\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} $$ Liouville's Theorem: Any non-constant entire function is unbounded. So $\cos(z)$ is unbounded in $\mathbb{C}$. $$ \text{Log}(-e^2) = \ln|-e^2| + i\arg(-e^2) = -2 + \pi i $$ At any point $z_0\in \mathbb{C}\setminus\{0\}$, there is an open set $z_0\in U\subset \mathbb{C}$ and a branch of logarithm defined on $U$. ### Q2 Power series expansion ### Q3 limit superior ### Q4 Bound integral ### Q5 $f_n$ converges pointwise to $f$ on $U$ if $\forall z\in U$, $\forall \epsilon > 0$, $\exists N$ s.t. $\forall n\geq N$, $|f_n(z)-f(z)| < \epsilon$. $f_n$ converges uniformly to $f$ on $U$ if $\forall \epsilon > 0$, $\exists N$ s.t. $\forall n\geq N$, $\forall z\in U$, $|f_n(z)-f(z)| < \epsilon$. Show for $|z|<1$, $f_n(z)=z^n$ converges pointwise to $0$ but not uniformly to $0$. (a) pointwise convergence: $|z^n| = |z|^n < \epsilon$ if $n > \frac{\ln\epsilon}{\ln|z|}$. (b) uniform convergence: No matter how small $\epsilon$ is, there is always a $z$ s.t. $|z^n| > \epsilon$ for all $n$. ## Continue from last lecture ### Schwarz's Lemma Let $f$ be an holomorphic function that maps the unit disk $D(0,1)$ to itself and $f(0)=0$. Then $|f(z)|\leq |z|$ for all $z\in D(0,1)$ #### Schwarz-Pick's Lemma (see exercise 7.17.2) Let $f$ be an holomorphic function that maps the unit disk $D(0,1)$ to itself. Then $\forall z,w\in D(0,1)$, $$ \left|\frac{f(z)-f(w)}{1-\overline{f(w)}f(z)}\right|\leq \left|\frac{z-w}{1-\overline{w}z}\right| $$ > Recall the Möbius map > > $$\phi_\alpha(z) = \frac{z-\alpha}{1-\overline{\alpha}z}$$ > > is a homeomorphism of the unit disk. > > So we can use the Möbius to restate the Schwarz-Pick's Lemma as: > > $$|\phi_{f(w)}(f(z))|\leq |\phi_w(z)|$$ Suppose we defined $g=\phi_{f(w)}\circ f\circ \phi_{-w}$, then $g$ is a holomorphic function that maps the unit disk to itself and $g(0)=0$. By Schwarz's Lemma, let $z\in D(0,1)$, $|g(z)|\leq |z|$. $$ |\phi_{f(w)}(f(\phi_{-w}(z)))|\leq |z| $$ Let $\zeta=\phi_{-w}(z)$, then $\zeta=\frac{z+w}{1+\overline{w}z}\in D(0,1)$, so $|\zeta|=\phi_w(z)$. #### Extension of Schwarz-Pick's Lemma in hyperbolic metric Suppose we defined the distance on $\mathbb{C}$ as $d(z,w)=|\frac{z-w}{1-\overline{w}z}|$. We claim that this is a metric on $\mathbb{C}$. $\forall z,w,v\in \mathbb{C}$: (a) $d(z,w)=0$ if and only if $z=w$ and $d(z,w)> 0$ otherwise. (b) $d(z,w)=d(w,z)$. (c) $d(z,w)\leq d(z,v)+d(v,w)$. We call this metric the Pseudo hyperbolic metric. > Hyperbolic metric: > > $$ \text{Hypdist}(z,w)=\tanh^{-1}(d(z,w))$$ > > Where $d(z,w)=|\frac{z-w}{1-\overline{w}z}|$ So we can restate the Schwarz-Pick's Lemma as: $$ d(f(z),f(w))\leq d(z,w) $$ And in hyperbolic metric, it becomes: $$ \text{Hypdist}(f(z),f(w))\leq \text{Hypdist}(z,w) $$ Suppose the equality holds for Schwarz-Pick's Lemma, then $|g(z)|=\tau z$ where $|\tau|=1$. Computation ignored here. Then $f$ is a Möbius map that is automorphism of the unit disk. ### Existence of harmonic conjugate Suppose $f=u+iv$ is holomorphic on a domain $U\subset \mathbb{C}$. Then $u=\text{Re}(f)$ is harmonic on $U$. That is $\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$. #### Theorem 7.18 Let $u$ be a real harmonic function on a convex domain $G\subset \mathbb{C}$. Then there exists $g\in O(G)$ such that $\text{Re}(g)=u$. Moreover, $g$ is unique up to an additive imaginary constant. Proof: Existence next time. Uniqueness: Suppose $g,h\in O(G)$ s.t. $\text{Re}(g)=\text{Re}(h)=u$. $\text{Re}g=u=\text{Re}h$ on $G$. If we can show that $(g-h)'=0$ on $G$, then we win. Let $g=u+iv$, $h=u+iw$. By the Cauchy-Riemann equations, $$ \begin{aligned} \frac{\partial}{\partial x}(g-h)&=\frac{\partial}{\partial x}i(v-w)\\ &=i\left(\frac{\partial u}{\partial y}-\frac{\partial u}{\partial y}\right)\\ &=0 \end{aligned} $$ Suppose $G=\mathbb{C}\setminus\{0\}$, then $u=\ln|z|=\frac{1}{2}\ln(x^2+y^2)$, which is harmonic. Continue next time.