# Math416 Lecture 22 ## Chapter 9: Generalized Cauchy Theorem ### Winding numbers Definition: Let $\gamma:[a,b]\to\mathbb{C}$ be a closed curve. The **winding number** of $\gamma$ around $z\in\mathbb{C}$ is defined as $$ \frac{1}{2\pi i}\Delta(arg(z-z_0),\gamma) $$ where $\Delta(arg(z-z_0),\gamma)$ is the change in the argument of $z-z_0$ along $\gamma$. #### Interior of curve The interior of $\gamma$ is the set of points $z\in\mathbb{C}$ such that the winding number of $\gamma$ around $z$ is non-zero. $$ int_\gamma(z)=\{z\in\mathbb{C}|\frac{1}{2\pi i}\Delta(arg(z-z_0),\gamma)\neq 0\} $$ #### Contour The winding number of a contour $\Gamma$ around $z$ is the sum of the winding numbers of the contours $\gamma_j$ around $z$. $$ ind_\Gamma(z)=\sum_{j=1}^nn_j ind_{\gamma_j}(z) $$ A contour is simple if $ind_\gamma(z)=\{0,1\}$ for all $z\in\mathbb{C}\setminus\gamma([a,b])$. #### Separation lemma Let $\Omega\subseteq \mathbb{C}$ be open, let $K\subset \Omega$ be compact, then $\exists$ a simple contour $\Gamma\subset \Omega\setminus K$ such that $$ K\subset int_\Gamma(\Gamma)\subset \Omega $$ Proof: First we show that $\exists$ a simple contour $\Gamma\subset \Omega\setminus K$ Let $0<\delta