# Lecture 5 ## Review In each case, determine (with justification) whether the claim or its negation is the true statement. (a) For all real numbers satisfying $a0$ such that $x<1/n$ for all $n\in \mathbb{N}$. The statement is ambiguous because we can arrange the statement in two ways. $\exists x\in \mathbb{R}_{>0}$ such that $\forall n\in \mathbb{N},x\leq \frac{1}{n}$ negation: $\forall x\in \mathbb{R}_{>0}$, $\exists n\in \mathbb{N}$, such that $x\leq \frac{1}{n}$. The statement is true, let $x=\frac{1}{n+1}$. ## New Materials ### Continue on the theorem #### Theorem 1.21 $\forall x\in \mathbb{R}_{>0},\forall n\in \mathbb{N},\exist$ unique $y\in \mathbb{R}_{>0}$ such that $y^n=x$. (Because of this Theorem we can define $x^{1/x}=y$ and $\sqrt{x}=y$) Proof: We cna assume $n\geq 2$ (For $n=1,y=x$) Step 1 (uniqueness): If $00}: t^n0$ such that $(y+h)^n0$ satisfying $h<1$ and $h<\frac{x-y^h}{n(y+h)^{n-1}}$ [For actual proof, see the text.] Step 2c showing ($y^n\leq x$) Suppose for contradiction $y^n>x$ Thoughts: Find $k>0$ such that $(y-k)^n>x$. Then $y-k$ is an upper bound for $E$, which contradicts the fact that $y$ is the least upper bound of $E$. $y^n-(y-k)^n\leq ny^{n-1}k$. We want $y^n-ny^{n-1}k\geq x$. So want $k\leq \frac{y^n-x}{ny^{n-1}}$ [For actual proof, see the text.] ### Complex numbers 1. $=\{a+bi:a,b\in \mathbb{R}\}$. Conjugate: $z=a+bi,\bar{z}=a-bi$. #### Theorem 1.31 (see text) Pure computational proof: boring... $z\bar{z}=a^2-(bi)^2=a^2+b^2$ You can also use vector sum for representing operation in complex numbers. #### Theorem 1.33 (see text) More computation and still, boring... some fun theorems: - $|Re\ z|\leq |z|$ (equal when no imaginary parts) - $|z+w|\leq |z|+|w|$ (equal when both $z,w$ have no imaginary parts) (Triangle inequality) Proof for $|z+w|\leq |z|+|w|$: $$ |z+w|^2=(z+w)(\overline{z+w})=(z+w)(\bar{z}+\bar{w})=|z|^2+|w|^2+z\bar{w}+\bar{z}w $$ Since $$ z\bar{w}+\bar{z}w\leq 2Re(z\bar{w}) $$ $$ (z+w)(\bar{z}+\bar{w})=|z|^2+|w|^2+z\bar{w}+\bar{z}w\leq |z|^2+|w|^2+2|z||w|\leq |z|+|w| $$ #### Theorem 1.35 Cauchy-Schwarz inequality If $\vec{a},\vec{b}\in \mathbb{C}^n$, then $$ |\vec{a}\vec{b}|^2\leq (\vec{a}\vec{a})(\vec{b}\vec{b}) $$ > Remark: The proof is very tricky. To help us motivate the proof in text, let's consider the special case of real numbers. $$ (\sum a_j b_j)^2=(\sum a_j^2)(\sum b_j^2) $$ Proof for real numbers: Let $A=\sum a_j^2,B=\sum b_j^2, C=\sum a_j b_j$, want to show $C^2\leq AB$ Note: if $B=0$, then $b_1=b_2=...=0$, so $C=0$ and we are done, so we may assume $B\neq 0$ so $B>0$. Clever step: For any $t\in \mathbb{R}$, $$ 0\leq \sum (a_j-t b_j)^2=\sum (a_j^2-2ta_jb_j+t^2b_i^2)=A-2tC+t^2B $$ let $t=C/B$ to get $0\leq A-2(C/B)C+(C/B)^2B=A-\frac{C^2}{B}$ to generalize this to $\mathbb{C}$, $A=\sum |a_j|^2,B=\sum |b_j|^2,C=\sum |a_j \bar{b_j}|$. ### Euclidean spaces Nothing much to say. lol. Normal dot product as inner product. read text... Theorem 1.37