# Math4202 Topology II (Lecture 8) ## Algebraic Topology ### Path homotopy #### Recall definition of path homotopy Let $f,f':I\to X$ be a continuous maps from an interval $I=[0,1]$ to a topological space $X$. Two pathes $f$ and $f'$ are path homotopic if - there exists a continuous map $F:I\times [0,1]\to X$ such that $F(i,0)=f(i)$ and $F(i,1)=f'(i)$ for all $i\in I$. - $F(s,0)=f(0)$ and $F(s,1)=f(1)$, $\forall s\in I$.$F(s,0)=f(0)$ and $F(s,1)=f(1)$, $\forall s\in I$ #### Lemma: Homotopy defines an equivalence relation The $\simeq$, $\simeq_p$ are both equivalence relations.
Proof **Reflexive**: $f:I\to X$, $F:I\times I\to X$, $F(s,t)=f(s)$. $F$ is a homotopy between $f$ and $f$ itself. **Symmetric**: Suppose $f,g:I\to X$, $F:I\times I\to X$ is a homotopy between $f$ and $g$. Let $H: I\times I\to X$ be a homotopy between $g$ and $f$ defined as follows: $H(s,t)=F(s,1-t)$. $H(s,0)=F(s,1)=g(s)$, $H(s,1)=F(s,0)=f(s)$. Therefore $H$ is a homotopy between $g$ and $f$. **Transitive**: Suppose we have $f\simeq_p g$ with homotopy $F_1$, and $g\simeq_p h$ with homotopy $F_2$. Then we can glue the two homotopies together to get a homotopy $F$ between $f$ and $h$ using pasting lemma. $F(s,t)=(F_1*F_2)(s,t)\coloneqq\begin{cases} F_1(s,2t), & t\in [0,\frac{1}{2}]\\ F_2(s,2t-1), & t\in [\frac{1}{2},1] \end{cases}$ Therefore $f\simeq_p h$ with homotopy $F$.
> [!NOTE] > > We use $[x]$ to denote the equivalence class of $x$.
Example of equivalence classes in path homotopy Let $X=\{pt\}$, $\operatorname{Path}(X)=\{\text{constant map}\}$.$\operatorname{Path}/_{\simeq_p}(X)=\{[\text{constant map}]\}$. --- $X=\{p,q\}$ with discrete topology, $\operatorname{Path}(X)=\{f_{p},f_{q}\}$.$\operatorname{Path}/_{\simeq_p}(X)=\{[f_{p}], [f_{q}]\}$ This applied to all discrete topological spaces. --- Let $X=\mathbb{R}$ with standard topology. $\operatorname{Path}(X)=\{f:[0,1]\to \mathbb{R}\in C^0\}$ Let $f_1,f_2:[0,1]\to \mathbb{R}$ where $f_1(0)=f_2(0)$, $f_1(1)=f_2(1)$. Then we can construct a homotopy between $f_1$ and $f_2$. $F:[0,1]\times [0,1]\to \mathbb{R}$, $F(s,t)=(1-t)f_1(s)+tf_2(s)$ is a homotopy between $f_1$ and $f_2$. $\operatorname{Path}/_{\simeq_p}(X)=\{(x_1,x_1)|x_1,x_2\in \mathbb{R}\}$ This applies to any convex space $V$ in $\mathbb{R}^n$.