# Math 401, Fall 2025: Thesis notes, S4, Bargmann space
## Bargmann space (original)
Also known as Segal-Bargmann space or Bargmann-Fock space.
It is the space of [holomorphic functions](../../Math416/Math416_L3#definition-28-holomorphic-functions) that is square-integrable over the complex plane.
> Section belows use [Remarks on a Hilbert Space of Analytic Functions](https://www.jstor.org/stable/71180) as the reference.
A family of Hilbert spaces, $\mathfrak{F}_n(n=1,2,3,\cdots)$, is defined as follows:
The element of $\mathfrak{F}_n$ are [entire](../../Math416/Math416_L13#definition-711) [analytic functions](../../Math416/Math416_L9#definition-analytic) in complex Euclidean space $\mathbb{C}^n$. $f:\mathbb{C}^n\to \mathbb{C}\in \mathfrak{F}_n$
Let $f,g\in \mathfrak{F}_n$. The inner product is defined by
$$
\langle f,g\rangle=\int_{\mathbb{C}^n} \overline{f(z)}g(z) d\mu_n(z)
$$
Let $z_k=x_k+iy_k$ be the complex coordinates of $z\in \mathbb{C}^n$.
The measure $\mu_n$ is the defined by
$$
d\mu_n(z)=\pi^{-n}\exp(-\sum_{i=1}^n |z_i|^2)\prod_{k=1}^n dx_k dy_k
$$
Example
For $n=2$,
$$
\mathfrak{F}_2=\text{ space of entire analytic functions on } \mathbb{C}^2\to \mathbb{C}
$$
$$
\langle f,g\rangle=\int_{\mathbb{C}^2} \overline{f(z)}g(z) d\mu(z),z=(z_1,z_2)
$$
$$
d\mu_2(z)=\frac{1}{\pi^2}\exp(-|z|^2)dx_1 dy_1 dx_2 dy_2
$$
so that $f$ belongs to $\mathfrak{F}_n$ if and only if $\langle f,f\rangle<\infty$.
This is absolutely terrible early texts, we will try to formulate it in a more modern way.
> The section belows are from the lecture notes [Holomorphic method in analysis and mathematical physics](https://arxiv.org/pdf/quant-ph/9912054)
## Complex function spaces
### Holomorphic spaces
Let $U$ be a non-empty open set in $\mathbb{C}^d$. Let $\mathcal{H}(U)$ be the space of holomorphic (or analytic) functions on $U$.
Let $f\in \mathcal{H}(U)$, note that by definition of holomorphic on several complex variables, $f$ is continuous and holomorphic in each variable with the other variables fixed.
Let $\alpha$ be a continuous, strictly positive function on $U$.
$$
\mathcal{H}L^2(U,\alpha)=\left\{F\in \mathcal{H}(U): \int_U |F(z)|^2 \alpha(z) d\mu(z)<\infty\right\},
$$
where $\mu$ is the Lebesgue measure on $\mathbb{C}^d=\mathbb{R}^{2d}$.
#### Theorem of holomorphic spaces
1. For all $z\in U$, there exists a constant $c_z$ such that
$$
|F(z)|^2\le c_z \|F\|^2_{L^2(U,\alpha)}
$$
for all $F\in \mathcal{H}L^2(U,\alpha)$.
2. $\mathcal{H}L^2(U,\alpha)$ is a closed subspace of $L^2(U,\alpha)$, and therefore a Hilbert space.
Proof
First we check part 1.
Let $z=(z_1,z_2,\cdots,z_d)\in U, z_k\in \mathbb{C}$. Let $P_s(z)$ be the "polydisk"of radius $s$ centered at $z$ defined as
$$
P_s(z)=\{v\in \mathbb{C}^d: |v_k-z_k|1$, we can use the same argument to show that
Let $\mathbb{I}_{P_s(z)}(v)=\begin{cases}1 & v\in P_s(z) \\0 & v\notin P_s(z)\end{cases}$ be the indicator function of $P_s(z)$.
$$
\begin{aligned}
F(z)&=(\pi s^2)^{-d}\int_{U}\mathbb{I}_{P_s(z)}(v)\frac{1}{\alpha(v)}F(v)\alpha(v) d\mu(v)\\
&=(\pi s^2)^{-d}\langle \mathbb{I}_{P_s(z)}\frac{1}{\alpha},F\rangle_{L^2(U,\alpha)}
\end{aligned}
$$
By definition of inner product.
So $\|F(z)\|^2\leq (\pi s^2)^{-2d}\|\mathbb{I}_{P_s(z)}\frac{1}{\alpha}\|^2_{L^2(U,\alpha)} \|F\|^2_{L^2(U,\alpha)}$.
All the terms are bounded and finite.
For part 2, we need to show that $\forall z\in U$, we can find a neighborhood $V$ of $z$ and a constant $d_z$ such that
$$
|F(z)|^2\leq d_z \|F\|^2_{L^2(U,\alpha)}
$$
> [!TIP]
>
> [1.] states that point-wise evaluation of $F$ on $U$ is continuous. That is, for each $z\in U$, the map $\varphi: \mathcal{H}L^2(U,\alpha)\to \mathbb{C}$ that takes $F\in \mathcal{H}L^2(U,\alpha)$ to $F(z)$ is a continuous linear functional on $\mathcal{H}L^2(U,\alpha)$. This is false for ordinary non-holomorphic functions, e.g. $L^2$ spaces.
#### Reproducing kernel
Let $\mathcal{H}L^2(U,\alpha)$ be a holomorphic space. The reproducing kernel of $\mathcal{H}L^2(U,\alpha)$ is a function $K:U\times U\to \mathbb{C}$, $K(z,w),z,w\in U$ with the following properties:
1. $K(z,w)$ is holomorphic in $z$ and anti-holomorphic in $w$.
$$
K(w,z)=\overline{K(z,w)}
$$
2. For each fixed $z\in U$, $K(z,w)$ is a square integrable $d\alpha(w)$. For all $F\in \mathcal{H}L^2(U,\alpha)$,
$$
F(z)=\int_U K(z,w)F(w) \alpha(w) dw
$$
3. If $F\in L^2(U,\alpha)$, let $PF$ denote the orthogonal projection of $F$ onto closed subspace $\mathcal{H}L^2(U,\alpha)$. Then
$$
PF(z)=\int_U K(z,w)F(w) \alpha(w) dw
$$
4. For all $z,u\in U$,
$$
\int_U K(z,w)K(w,u) \alpha(w) dw=K(z,u)
$$
5. For all $z\in U$,
$$
|F(z)|^2\leq K(z,z) \|F\|^2_{L^2(U,\alpha)}
$$
### Bargmann space
The Bargmann spaces are the holomorphic spaces
$$
\mathcal{H}L^2(\mathbb{C}^d,\mu_t)
$$
where
$$
\mu_t(z)=\text{ CONTINUE HERE }
$$