# Lecture 7 ## Review Let $S=\{(x,y,z)\in \mathbb{R}^3:x=1,y=4\}=\{(1,4,z):z\in\mathbb{R}\}$ 1. How can we describe the set $S$ geometrically in three-dimensional space? Just a line 2. Show that $S$ and $\mathbb{R}$ are in one-to-one correspondence. We can find a bijective function $f:S\to \mathbb{R}$ 3. Show that for any $(a,b)\in\mathbb{Z}^2$, the set $\{(a,b,z):z\in\mathbb{Z}\}$ is in one-to-one correspondence with $\mathbb{Z}$ Use **Theorem 2.13** $A$ is countable, $n\in \mathbb{N} \implies A^n=\{(a_{1},...,a_{n}):a_1\in A, a_n\in A\}$, is countable. ## New materials ### Metric spaces #### Definition 2.15 Let $X$ be a set. A function $d:X\times X\to \mathbb{R}$ is called a distance function or a metric if it satisfies: 1. Positivity: $\forall p,q\in X,p\neq q\implies d(p,q)>0$, and $\forall p\in X,d(p,p)=0$. 2. Symmetry: $\forall p,q\in X, d(p,q)=d(q,p)$. 3. Triangle inequality: $\forall p,q,r\in X$, $d(p,q)\leq d(p,r)+d(r,q)$ We say **$(X,d)$ is a metric space**. If $d$ is understood, $X$ is a metric space. Examples: The most important example: $X\subset \mathbb{R}^k(k\geq 1)$ $d(x,y)=|x-y|$ And other examples: function spaces... An example from graph theory (not needed for this class): $d(p,q)$ can be defined by the shortest path fro $p$ to $q$. #### Definition 2.17 By the *segment* $(a,b)$ we mean the set of all real numbers $x$ such that $a0$. The r-neighborhood of $p$ is $B_r(p)=N_r(o)=\{q\in X: d(p,q)0$ such that $B_r(p)\subset E$. Notation $E^{\circ}=$set of interior points of $E$ 3. $E\subset X$, we say $E$ is **open** if $E\subset E^{\circ}$, i.e. $\forall p\in E, \exists r>0$ such that $B_r(p)\subset E$. *Note: is follows from definitions that $E^{\circ}\subset E$ is always true.* Example: $X=\mathbb{R}^2$($d$ be the euclidean distance) $E=[0,1)\times [0,1)$. $E^{\circ}=(0,1)\times (0,1)$ So $E=(0,1)\times (0,1)$ is a open set. #### Theorem 2.19 Let $(X,d)$ be a metric space, $\forall p\in X,\forall r>0$, $B_r(p)$ is an open set. *every ball is an open set* Proof: Let $q\in B_r(p)$. Let $h=r-d(p,q)$. Since $q\in B_r(p),h>0$. We claim that $B_h(q)$. Then $d(q,s)0, (B_r(p)\cap E)\backslash {p}\neq \phi$. Let $E'$ be the set of limit points of $E$. 2. $E$ is closed if $E'\subset E$ Example: $X=\mathbb{R}^2$, $E=[0,1)\times [0,1)$. $(1,1)$ is a limit point. $X=\mathbb{R},E=\{\frac{1}{n},n\in \mathbb{N}\}$ $0$ is the only limit point. $E'=\{0\}$