# Math416 Lecture 18 ## Chapter 8: Laurent Series and Isolated Singularities ### 8.1 Laurent Series #### Definition of Laurent Series $$ \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n $$ where $c_n$ are complex coefficients. Let $R_2=\frac{1}{\limsup_{n\to\infty} |c_n|^{1/n}}$, then the Laurent series converges on $|z-z_0|R_1$, the Laurent series diverges. If $R_1\leq R_2$, then the Laurent series converges on $A(z_0;R_1,R_2)=\{z:R_1<|z-z_0| Additional Proof $$ \int_{C(z_0,r)} (z-z_0)^n dz = \begin{cases} 2\pi i, & n=-1 \\0, & n\neq -1\end{cases} $$ Proof: $\gamma(t)=z_0+re^{it}, t\in[0,2\pi]$ $$ \begin{aligned} \int_{C(z_0,r)} (z-z_0)^n dz &= \int_0^{2\pi} (z_0+re^{it}-z_0)^n ire^{it} dt \\ &= ir^{n+1} \int_0^{2\pi} e^{i(n+1)t} dt \\ &= \begin{cases} 2\pi i, & n=-1 \\ \int_0^{2\pi} e^{i(n+1)t} dt = \frac{1}{i(n+1)}e^{i(n+1)t}\Big|_0^{2\pi} = 0, & n\neq -1 \end{cases} \end{aligned} $$ So, $$ \int_{C(z_0,r)} f(z) dz = \sum_{n=-\infty}^{\infty} c_n \int_{C(z_0,r)} (z-z_0)^n dz=c_{-1}2\pi i $$ And, $$ \int_{C(z_0,r)} f(z)(z-z_0)^k dz = \sum_{n=-\infty}^{\infty} c_n \int_{C(z_0,r)} (z-z_0)^{n+k} dz = c_{-1-k}2\pi i $$ So, $$ 2\pi i c_j = \int_{C(z_0,r)} f(z)(z-z_0)^{-j-1} dz $$ ### Cauchy integral Recall Cauchy integral formula: $$ f(z) = \int_{\gamma} \frac{\phi(\xi)}{\xi-z} d\xi $$ where $\gamma$ is a closed curve. Suppose $|z-z_0|>R$, $$ \begin{aligned} \frac{1}{\xi-z}&=\frac{1}{\xi-z_0-(z-z_0)}\\ &=-\frac{1}{z-z_0}\frac{1}{1-\frac{\xi-z_0}{z-z_0}}\\ &=-\frac{1}{z-z_0}\sum_{n=0}^{\infty} \frac{(\xi-z_0)^n}{(z-z_0)^n}\\ &=-\sum_{m=1}^{\infty} (\xi-z_0)^{m-1}(z-z_0)^{-m} \end{aligned} $$ So, $$ \begin{aligned} f(z) &= \int_{\gamma} \frac{\phi(\xi)}{\xi-z} d\xi\\ &= -\int_{\gamma} \sum_{m=1}^{\infty} (\xi-z_0)^{m-1}(z-z_0)^{-m}\phi(\xi) d\xi\\ &=-\sum_{m=1}^{\infty} (z-z_0)^{-m} \int_{\gamma} (\xi-z_0)^{m-1} \phi(\xi) d\xi \end{aligned} $$ So the Cauchy integral $\int_{\gamma} \frac{\phi(\xi)}{\xi-z} d\xi$ is a convergent power series in $B_{d(z_0,\gamma)}(z_0)$ and is a convergent Laurent series (with just negative powers) in $\mathbb{C}\setminus B_{\max_{\xi\in \gamma} d(z_0,\xi)}(z_0)$ #### Theorem 8.4 Cauchy Theorem for Annulus Suppose $f$ is holomorphic on $A(z_0;R_1,R_2)$, Let $C_r=\{z:|z-z_0|=r\}$, oriented counterclockwise. Then $I(r)=\int_{C_r} f(z) dz$ is independent of $r$ for $R_1