# Math416 Lecture 5 ## Review Let $f$ be a complex function. that maps $\mathbb{R}^2$ to $\mathbb{R}^2$. $f(x+iy)=u(x,y)+iv(x,y)$. $$ Df(x+iy)=\begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}\\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}=\begin{pmatrix} \alpha & \beta\\ \sigma & \delta \end{pmatrix} $$ So, $$ \begin{aligned} \frac{\partial f}{\partial z}&=\frac{1}{2}\left(u_x+v_y\right)-i\frac{1}{2}\left(v_x+u_y\right)\\ &=\frac{1}{2}\left(\alpha+\delta\right)-i\frac{1}{2}\left(\beta-\sigma\right)\\ \end{aligned} $$ $$ \begin{aligned} \frac{\partial f}{\partial \overline{z}}&=\frac{1}{2}\left(u_x+v_y\right)+i\frac{1}{2}\left(v_x+u_y\right)\\ &=\frac{1}{2}\left(\alpha-\delta\right)+i\frac{1}{2}\left(\beta+\sigma\right)\\ \end{aligned} $$ When $f$ is conformal, $$ Df(x+iy)=\begin{pmatrix} \alpha & \beta\\ -\beta & \alpha \end{pmatrix} $$ So, $$ \frac{\partial f}{\partial z}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a $$ $$ \frac{\partial f}{\partial \overline{z}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0 $$ > Less pain to represent a complex function using four real numbers. ## Chapter 3: Linear fractional Transformations Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$. The linear fractional transformation is defined as $$ \phi(z)=\frac{az+b}{cz+d} $$ If we let $\psi(z)=\frac{ez-f}{-gz+h}$ also be a linear fractional transformation, then $\phi\circ\psi$ is also a linear fractional transformation. New coefficients can be solved by $$ \begin{pmatrix} a & b\\ c & d \end{pmatrix} \begin{pmatrix} e & f\\ g & h \end{pmatrix} = \begin{pmatrix} k&l\\ m&n \end{pmatrix} $$ So $\phi\circ\psi(z)=\frac{kz+l}{mz+n}$ ### Complex projective space $\mathbb{R}P^1$ is the set of lines through the origin in $\mathbb{R}^2$. We defined $(a,b)\sim(c,d),(a,b),(c,d)\in\mathbb{R}^2\setminus\{(0,0)\}$ if $\exists t\neq 0,t\in\mathbb{R}\setminus\{0\}$ such that $(a,b)=t(c,d)$. $R\mathbb{P}^1=S^1\setminus\{\pm x\}\cong S^1$ Equivalently, $\mathbb{C}P^1$ is the set of lines through the origin in $\mathbb{C}$. We defined $(a,b)\sim(c,d),(a,b),(c,d)\in\mathbb{C}\setminus\{(0,0)\}$ if $\exists t\neq 0,t\in\mathbb{C}\setminus\{0\}$ such that $(a,b)=(tc,td)$. So, $\forall z\in\mathbb{C}\setminus\{0\}$: If $a\neq 0$, then $(a,b)\sim(1,\frac{b}{a})$. If $a=0$, then $(0,b)\sim(0,-b)$. So, $\mathbb{C}P^1$ is the set of lines through the origin in $\mathbb{C}$. ### Linear fractional transformations Let $M=\begin{pmatrix} a & b\\ c & d \end{pmatrix}$ be a $2\times 2$ matrix with complex entries. That maps $\mathbb{C}^2$ to $\mathbb{C}^2$. Suppose $M$ is non-singular. Then $ad-bc\neq 0$. If $M\begin{pmatrix} z_1\\ z_2 \end{pmatrix}=\begin{pmatrix} \omega_1\\ \omega_2 \end{pmatrix}$, then $M\begin{pmatrix} tz_1\\ tz_2 \end{pmatrix}=\begin{pmatrix} t\omega_1\\ t\omega_2 \end{pmatrix}$. So, $M$ induces a map $\phi_M:\mathbb{C}P^1\to\mathbb{C}P^1$ defined by $M\begin{pmatrix} z\\ 1 \end{pmatrix}=\begin{pmatrix} \frac{az+b}{cz+d}\\ 1 \end{pmatrix}$. $\phi_M(z)=\frac{az+b}{cz+d}$. If we let $M_2=\begin{pmatrix} e &f\\ g &h \end{pmatrix}$, where $ad-bc\neq 0$ and $eh-fg\neq 0$, then $\phi_{M_2}(z)=\frac{ez+f}{gz+h}$. So, $M_2M_1=\begin{pmatrix} a&b\\ c&d \end{pmatrix}\begin{pmatrix} e&f\\ g&h \end{pmatrix}=\begin{pmatrix} z\\ 1 \end{pmatrix}$. This also gives $\begin{pmatrix} kz+l\\ mz+n \end{pmatrix}\sim\begin{pmatrix} \frac{kz+l}{mz+n}\\ 1 \end{pmatrix}$. So, if $ab-cd\neq 0$, then $\exists M^{-1}$ such that $M_2M_1=I$. So non-constant linear fractional transformations form a group under composition. When do two matrices gives the $t_0$ same linear fractional transformation? $M_2^{-1}M_1=\alpha I$ We defined $GL(2,\mathbb{C})$ to be the group of general linear transformations of order 2 over $\mathbb{C}$. This is equivalent to the group of invertible $2\times 2$ matrices over $\mathbb{C}$ under matrix multiplication. Let $F$ be the function that maps $M$ to $\phi_M$. $F:GL(2,\mathbb{C})\to\text{Homeo}(\mathbb{C}P^1)$ So the kernel of $F$ is the set of matrices that represent the identity transformation. $\ker F=\left\{\alpha I\right\},\alpha\in\mathbb{C}\setminus\{0\}$. #### Corollary of conformality If $\phi$ is a non-constant linear fractional transformation, then $\phi$ is conformal.
Proof Know that $\phi_0\circ\phi(z)=z$, Then $\phi(z)=\phi_0^{-1}\circ\phi\circ\phi_0(z)$. So $\phi(z)=\frac{az+b}{cz+d}$. $\phi:\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ which gives $\phi(\infty)=\frac{a}{c}$ and $\phi(-\frac{d}{c})=\infty$. So, $\phi$ is conformal.
#### Proposition 3.4 of Fixed points Any non-constant linear fractional transformation except the identity transformation has 1 or 2 fixed points.
Proof Let $\phi(z)=\frac{az+b}{cz+d}$. Case 1: $c=0$ Then $\infty$ is a fixed point. Case 2: $c\neq 0$ Then $\phi(z)=\frac{az+b}{cz+d}$. The solution of $\phi(z)=z$ is $cz^2+(d-a)z-b=0$. Such solutions are $z=\frac{-(d-a)\pm\sqrt{(d-a)^2+4bc}}{2c}$. So, $\phi$ has 1 or 2 fixed points.
#### Proposition 3.5 of triple transitivity If $z_1,z_2,z_3\in\mathbb{C}P^1$ are distinct, then there exists a non-constant linear fractional transformation $\phi$ such that $\phi(z_1)=z_2$ and $\phi(z_3)=\infty$. Proof as homework. #### Theorem 3.8 Preservation of clircles We defined clircle to be a circle or a line. If $\phi$ is a non-constant linear fractional transformation, then $\phi$ maps clircles to clircles. Proof continue on next lecture.