# Math4302 Modern Algebra (Lecture 13) ## Groups ### Cosets Last time we see that (left coset) $a\sim b$ (to differentiate from right coset, we may denote it as $a\sim_L b$) by $a^{-1}b\in H$ defines an equivalence relation. #### Definition of Equivalence Class Let $a\in H$, and the equivalence class containing $a$ is defined as: $$ aH=\{x|a\simeq x\}=\{x|a^{-1}x\in H\}=\{x|x=ah\text{ for some }h\in H\} $$. #### Properties of Equivalence Class $aH=bH$ if and only if $a\sim b$.
Proof If $aH=bH$, then since $a\in aH, a\in bH$, then for some $h$, $a=bh$, since $b^{-1}a\in H$, so $a^{-1}b\in H$, therefore $a\simeq b$. If $a\sim b$, then $aH\subseteq bH$, since anything in $aH$ is related to $a$, therefore it is related to $b$ so $a\in bH$. $bH\subseteq aH$, apply the reflexive property for equivalence relation, therefore $b\in aH$. So $aH=bH$.
If $aH\cap bH\neq \emptyset$, then $aH=bH$.
Proof If $x\in aH\cap bH$, then $x\sim a$ and $x\sim b$, so $a\sim b$, so $aH=bH$.
$aH=H$ if and only if $a\in H$.
Proof $aH=eH$ if and only if $a\sim e$, if and only if $a\in H$.
$aH$ is called **left coset** of $a$ in $H$.
Examples Consider $G=S_3=\{e,\rho,\rho^2,\tau_1,\tau_2,\tau_3\}$. where $\rho=(123),\rho^2=(132),\tau_1=(12),\tau_2=(23),\tau_3=(13)$. $H=\{e,\rho,\rho^2\}$. All the left coset for $H$ is $H=eH=\rho H=\rho^2H$. $$ \tau_1\rho=(23)=\tau_2\\ \tau_1\rho^2=(13)=\tau_3\\ \tau_2\rho=(31)=\tau_3\\ \tau_2\rho^2=(12)=\tau_1 \tau_3\rho=(12)=\tau_1\\ \tau_3\rho^2=(23)=\tau_2 $$ $$ \tau_1H=\{\tau_1,\tau_2,\tau_3\}=\tau_2H=\tau_3H\\ $$ --- Consider $G=\mathbb{Z}$ with $H=5\mathbb{Z}$. We have 5 cosets, $H,1+H,2+H,3+H,4+H$.
#### Lemma for size of cosets Any coset of $H$ has the same cardinality as $H$. Define $\phi:H\to aH$ by $\phi(h)=ah$. $\phi$ is an bijection, if $ah=ah'\implies h=h'$, it is onto by definition of $aH$. #### Corollary: Lagrange's Theorem If $G$ is a finite group, and $H\leq G$, then $|H|\big\vert |G|$. (size of $H$ divides size of $G$)
Proof Suppose $H$ has $r$ distinct cosets, then $|G|=r|H|$, so $|H|$ divides $|G|$.
#### Corollary for Lagrange's Theorem If $|G|=p$, where $p$ is a prime number, then $G$ is cyclic.
Proof Prick $e\neq a\in G$, let $H=\langle a\rangle \leq G$, then $|H|$ divides $|G|$, since $p$ is prime, then $|H|=|G|$, so $G=\langle a \rangle$.
If $G$ is finite and $a\in G$, then $\operatorname{ord}(a)\big\vert|G|$.
Proof Since $\operatorname{ord}(a)=|\langle a\rangle|$, and $\langle a\rangle $ is a subgroup, so $\operatorname{ord}(a)\big\vert|G|$.
#### Definition of index Suppose $H\leq G$, the number of distinct left cosets of $H$ is called the index of $H$ in $G$. Notation is $(G:H)$. #### Definition of right coset Suppose $H\leq G$, define the equivalence relation by $a\sim 'b$ (or $a\sim_R b$ in some textbook) if $a b^{-1}\in H$. (note the in left coset, we use $a^{-1}b \in H$, or equivalently $b^{-1}a \in H$, these are different equivalence relations) The equivalent class is defined $$ Ha=\{x\in G|x\sim'a\}=\{x\in G|xa^{-1}\in H\}=\{x|x=ha\text{ for some }h\in H\} $$ Some properties are the same as the left coset - $Ha=H\iff a\in H$ - $Ha=Hb$ if and only if $a\sim'b\iff a b^{-1}\in H$. - $Ha\cap Hb\neq \emptyset\iff Ha=Hb$. Some exercises: Find all the left and right cosets of $G=S_3$, there should be 2 left cosets and 2 right cosets (giving different partition of $G$).