# Math4302 Modern Algebra (Lecture 2) ## Recall from last lecture ### Binary operations A binary operation that is not associative but commutative: Consider $(\mathbb{Z},*)$ where $a*b=|a-b|$. This is trivially commutative. But $a=4,b=3,c=1$ gives $(a*b)*c=(4*3)*1=1*1=0$. and $a*(b*c)=4*(3*1)=4*2=2$. #### Definition for identity element An element $e\in X$ is called identity element if $a*e=e*a=a$ for all $a\in X$. ### Group #### Definition of group A group is a set $G$ with a binary operation $*$ that satisfies the following axioms: 1. Closure: $\forall a,b\in G, a* b\in G$ (automatically guaranteed by definition of binary operation). 2. Associativity: $\forall a,b,c\in G, (a* b)* c=a* (b* c)$. 3. Identity element: $\exists e\in G, \forall a\in G, a* e=e* a=a$. 4. Inverses: $\forall a\in G, \exists a^{-1}\in G, a* a^{-1}=a^{-1}* a=e$. > [!NOTE] > > The inverse of $a$ is unique: If there is $b'\in G$ such that $b'*a=a*b'=e$, then $b=b'$. > > Proof: > > $b'=b'*e=b'*(a*b)=(b'*a)*b=e*b=b$. > > apply the definition of group.
Example of group $(\mathbb{Z},+)$ is a group. $(\mathbb{Q},+)$ is a group. $(\mathbb{R},+)$ is a group. with identity $0$ and all abelian groups. --- $(\mathbb{Z},\cdot)$, $\mathbb{Q},\cdot)$, $(\mathbb{R},\cdot)$ are not groups ($0$ has no inverse). --- We can fix this by removing $0$. $(\mathbb{Q}\setminus\{0\},\cdot)$, $(\mathbb{R}\setminus\{0\},\cdot)$ are groups. --- $(\mathbb{Z}\setminus\{0\},\cdot)$ is not a group. $(\mathbb{Z}_+,+)$ is not a group. --- Consider $S$ be the set of all functions from $\mathbb{R}$ to $\mathbb{R}$. $(S,+)$ - Identity: $f(x)=0$ - Associativity: $(f+g)(x)=f(x)+g(x)$ - Inverse: $f(x)=-f(x)$ This is a group. $(S,\circ)$ - Identity: $f(x)=x$ - Associativity: $(f\circ g)(x)=f(g(x))$ - Inverse: not all have inverse...... (functions which are not bijective don't have inverses) This is not a group. --- $\operatorname{GL}_(n,\mathbb{R})$: set of $n\times n$ invertible matrices over $\mathbb{R}$. $(\operatorname{SL}_(n,\mathbb{R}),\cdot)$ where $\cdot$ is matrix multiplication. - Identity: $I_n$ - Associativity: $(A\cdot B)\cdot C=A\cdot (B\cdot C)$ - Inverse: $(A^{-1})^{-1}=A$ This is a group. **Matrix multiplication is not generally commutative**, therefore it's not abelian.
#### Definition of abelian group A group $(G,*)$ is called abelian if $a* b=b* a$ for all $a,b\in G$. ($*$ is commutative) #### Properties of group 1. $(a*b)^{-1}=b^{-1}* a^{-1}$
Proof $(b^{-1}* a^{-1})*(a*b)=b^{-1}* a^{-1}*a*b=b^{-1}* e*b=b*b^{-1}=e$ $(a*b)* (b^{-1}* a^{-1})=a* b*b^{-1}* a^{-1}=a* e*a^{-1}=a*a^{-1}=e$
2. Cancellation from right and left: $$ a*b=a*c\implies b=c $$ $$ b*a=c*a\implies b=c $$
Proof $$ \begin{aligned} a*b&=a*c\\ a^{-1}*(a*b)&=a^{-1}*(a*c)\\ e*b&=e*c\\ b&=c \end{aligned} $$ right cancellation are the same
> [!NOTE] > > This also implies that every row/column of the table representation of the binary operation is distinct. > > _If not, suppose $a,b$ have the same row/column, then we can prove $a=b$ using cancellation from right and left._ 3. We can solve equations $a*x=b \text{ and } x*a=b $ uniquely. $x=a^{-1}* b$, similarly $x=b* a^{-1}$. ### Finite groups Group with 1 element $\{e\}$. Group with 2 elements $\{e,a\}$. (example is $(\{-1,1\},\times)$) And |*|e|a| |-|-|-| |e|e|a| |a|a|e| Group with 3 elements $\{e,a,b\}$. And the possible ways to fill the table are: |*|e|a|b| |-|-|-|-| |e|e|a|b| |a|a|b|e| |b|b|e|a|