# Lecture 4 ## Chapter 5. Differentiation ### The continuity of the derivative #### Theorem 5.12 Suppose $f$ is differentiable on $[a,b]$, Then $f'$ attains intermediate values between $f'(a)$ and $f'(b)$. Proof: Let $\lambda\in (f'(a),f'(b))$. We need to show that there exists $x\in (a,b)$ such that $f'(x)=\lambda$. Let $g(x)=f(x)-\lambda x$. Then $g$ is differentiable on $(a,b)$ and $$ g'(x)=f'(x)-\lambda. $$ So $g'(a)=f'(a)-\lambda<0$ and $g'(b)=f'(b)-\lambda>0$. We need to show that $g'(x)=0$ for some $x\in (a,b)$. Since $g'(a)<0$, $\exists t_1\in (a,b)$ such that $g'(t_1)0$, $\exists t_2\in (a,b)$ such that $g'(t_2) Recall the [Definition 3.1](https://notenextra.trance-0.com/Math4111/Math4111_L13#definition-31). Proof: Main step: Suppose $-\infty\leq A\leq \infty$, and let $q>A$ with neighborhood $(-,\infty,q)$. Then $\exists c\in \mathbb{R}$ such that $\frac{f(x)}{g(x)}g(y)$ for all $x\in (a,c_1)$. Therefore, $$ \begin{aligned} \frac{f(x)-f(y)}{g(x)}&<\frac{r[g(x)-g(y)]}{g(x)}\\ \frac{f(x)}{g(x)}&\frac{|rg(y)|+|f(y)|}{q-r} $$ There exists $c_2\in (a,c_1)$ such that $|g(x)|>\frac{|rg(y)|+|f(y)|}{q-r},\forall x\in (a,c_2)$. So $\forall x\in (a,c_2)$, $$ \frac{f(x)}{g(x)}<\frac{rg(y)+f(y)}{g(x)}