# Lecture 4 Office hour after lecture: Cupules I 109 ## Chapter II Finite Dimensional Subspaces ### Span and Linear Independence 2A #### Definition 2.2 Linear combination Given a list (a finite list), of $\mathbb{F}$ vectors $\vec{v_1},...,\vec{v_m}$. A linear combination of $\vec{v_1},...,\vec{v_m}$ is a vector $\vec{v}=a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m},a_i\in \mathbb{F}$ (Adding vectors with different weights) #### Definition 2.4 Span The set of all linear combinations of $\vec{v_1},...,\vec{v_m}$ is called the span of $\{\vec{v_1},...,\vec{v_m}\}$ Span $\{\vec{v_1},...,\vec{v_m}\}=\{\vec{v}\in V, \vec{v}=a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m}\textup{ for some }a_i\in \mathbb{F}\}$ Note: When there is a nonzero vector in $\{\vec{v_1},...,\vec{v_m}\}$, the span is a infinite set. Example: Consider $V=\mathbb{R}^3$, find the span of the vector $\{(1,2,3),(1,1,1)\}$, The span is $\{a_1\cdot (1,2,3),a_2\cdot (1,1,1):a_1,a_2\in \mathbb{R}\}=\{(a_1+a_2,2a_1+a_2,3a_1+a_2):a_1,a_2\in \mathbb{R}\}$ $(-1,0,1)\in Span((1,2,3),(1,1,1))$ $(1,0,1)\cancel{\in} Span((1,2,3),(1,1,1))$ #### Theorem 2.6 The span of a list of vectors in $V$ is the smallest subspace of $V$ containing this list. Proof: 1. Span is a subspace $Span\{\vec{v_1},...,\vec{v_m}\}=\{a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m}\textup{ for some }a_i\in \mathbb{F}\}$ * The zero vecor is inside the span by letting all the $a_i=0$ * Closure under addition: $a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m}+b_1\vec{v_1}+b_2\vec{v_2}+...+b_m\vec{v_m}=(a_1+b_1)\vec{v_1}+(a_2+b_2)\vec{v_2}+...+(a_m+b_m)\vec{v_m}\in Span\{\vec{v_1},...,\vec{v_m}\}$ * Closure under multiplication: $c(a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m})=(ca_1)\vec{v_1}+(ca_2)\vec{v_2}+...+(ca_m)\vec{v_m}\in Span\{\vec{v_1},...,\vec{v_m}\}$ 2. Span is the **smallest** subspace containing the given list. For each $i\in\{1,...,m\}$, $\vec{v_i}=0\vec{v_1}+...+0\vec{v_{i-1}}+\vec{v_i}+0\vec{v_{i+1}}+...+0\vec{v_m}\in Span\{\vec{v_1},...,\vec{v_m}\}$ If $W$ is a subspace of $V$ containing $Span\{\vec{v_1},...,\vec{v_m}\}$, then $W$ is closed under addition and scalar multiplication. Thus for any $a_1,...,a_m\in \mathbb{F},a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m}\in W$. So $Span\{\vec{v_1},...,\vec{v_m}\}\subset W$ #### Definition 2.ex.1 Spanning set If a vector space $V=Span\{\vec{v_1},...,\vec{v_m}\}$, then we say $\{\vec{v_1},...,\vec{v_m}\}$ spans $V$, which is the spanning set of $V$. A vector space is called finite dimensional if it spanned by a **finite** list. Example: $\mathbb{F}^n$ is finite dimensional $\mathbb{R}=Span\{(1,0,0),(0,1,0),(0,0,1)\}$ $(a,b,c)=a(1,0,0)+b(0,1,0)+c(0,0,1)$ #### Definition Polynomial A polynomial is a **function** $p:\mathbb{F}\to \mathbb{F}$ such that $p(Z)=\sum_{i=0}^{m} a_i z^i,a_i\in \mathbb{F}$ Let $\mathbb{P}(\mathbb{F})$ be the set of polynomials over $\mathbb{F}$, then $\mathbb{P}(\mathbb{F})$ has the structure of a vector space. If we consider the degree of polynomials, then $f=a_1f_1+...+a_mf_m$, with degree $f\leq max\{deg(f_1,...,f_m)\}$ $\mathbb{P}(\mathbb{F})$ is a infinite dimensional vector space. Let $\mathbb{P}_m(\mathbb{F})$ be the set of polynomials of degree at mote $m$, then $\mathbb{P}_m(\mathbb{F})$ is a finite dimensional vectro space. $\mathbb{P}_m(\mathbb{F})=Span\{1,z,z^2,...z^m\}$ #### Linear independence How to find a "good" spaning set for a finite dimensional vector space. Example: $V=\mathbb{R^2}$ $\mathbb{R^2}=Span\{(1,0),(0,1)\}$ $\mathbb{R^2}=Span\{(1,0),(0,1),(0,0),(1,1)\}$ $\mathbb{R^2}=Span\{(1,2),(3,1),(4,25)\}$ #### Definition 2.15 A list of vector $\vec{v_1},...,\vec{v_m}$ in $V$ is called linearly independent if the only choice for $a_1,...,a_m\in \mathbb{F}$ such that $a_1\vec{v_1}+...+a_m\vec{v_m}=\vec{0}$ is $a_1=...=a_m=0$ If not, then there must $\exists\vec{v_i}$ that can be expressed by other vectors in the set.