# Lecture 27 ## Chapter VI Inner Product Spaces ### Orthonormal basis 6B #### Theorem 6.32 Gram-Schmidt Suppose $v_1,...,v_m$ is a linearly independent list. Let $f_k\in V$ by $f_1=v_1$, and $f_k=v_k-\sum_{j=1}^{k-1}\frac{\langle v_k,f_j\rangle }{||f_j||^2}f_j$. Then set $e_k=\frac{f_k}{||f_k||}$, then $e_1,...,e_m$ is orthonormal with $Span(e_1,...,e_k)=Span(v_1,...,v_k)$ for each $k=1,...,m$ Proof: note is suffice to show that $f_1,...,f_m$ is orthogonal and that $Span(e_1,...,e_m)=Span(v_1,...,v_m)$ Induct on $m$. When $m=1$: clear When $m>1$: Suppose we know the result for values $< m$. Need to show that $\langle f_m,f_k\rangle =0$ for $k