# Math4201 Topology I (Lecture 13) ## Metic spaces ### Three different metrics on $\mathbb{R}^n$ Euclidean metric: $$ d(x,y)=\sqrt{\sum_{i=1}^n (x_i-y_i)^2} $$ Square metric: $$ d(x,y)=\max_{i=1}^n |x_i-y_i| $$ Manhattan metric: $$ d(x,y)=\sum_{i=1}^n |x_i-y_i| $$ So to prove our proposition, we need to show that any pair of metrics $d$ and $d'$ with basis generated by balls defined $$ \mathcal{B}=\{B_r^{(d)}(x)|x\in X,r>0,r\in \mathbb{R}\} $$ and $$ \mathcal{B}'=\{B_r^{(d')}(x)|x\in X,r>0,r\in \mathbb{R}\} $$ are equivalent. #### Proposition: The metrics induce the same topology on $\mathbb{R}^n$ The three metrics induce the same topology on $\mathbb{R}^n$, and it's the standard topology. #### Lemma of equivalent topologies If $\mathcal{T}$ and $\mathcal{T}'$ are two topologies on $X$, we say $\mathcal{T}$ and $\mathcal{T}'$ are equivalent to each other if and only if the following two conditions are satisfied: 1. $\forall B_1\in \mathcal{T}, \exists B_2\in \mathcal{T}'$ such that $\forall x\in B_1, \exists x\in B_2\subseteq B_1$. 2. $\forall B_2\in \mathcal{T}', \exists B_1\in \mathcal{T}$ such that $\forall x\in B_2, \exists x\in B_1\subseteq B_2$. #### Lemma of equivalent metrics Let $d$ and $d'$ be two metrics on $X$. If the following holds, then the metric topology associated to $d$ and $d'$ are equivalent. 1. $\forall x\in X, \forall \delta>0, \exists \epsilon>0$ such that $B_\delta(x)\subseteq B_\epsilon(x)$ 2. $\forall x\in X, \forall \epsilon>0, \exists \delta>0$ such that $B_\epsilon(x)\subseteq B_\delta(x)$
Proof To apply the lemma, we try to compute the three metrics on $\mathbb{R}^n$. $u=(u_1,u_2,\dots,u_n), v=(v_1,v_2,\dots,v_n)\in \mathbb{R}^n$ For Euclidean metric: $$ d(u,v)=\sqrt{\sum_{i=1}^n (u_i-v_i)^2} $$ For square metric: $$ \rho(u,v)=\max_{i=1}^n |u_i-v_i| $$ For Manhattan metric: $$ m(u,v)=\sum_{i=1}^n |u_i-v_i| $$ **First** we will show that $d$ and $\rho$ are equivalent. Note that $$ \max_{i=1}^n |u_i-v_i|\leq \sqrt{\sum_{i=1}^n (u_i-v_i)^2} $$ So $\forall u\in B_r^{(d)}(x), d(u,v) imagine two square capped circle inside **Then we will show** that $\rho$ and $m$ are equivalent. Observing that $$ \max_{i=1}^n |u_i-v_i|\leq \sum_{i=1}^n |u_i-v_i|\leq n\times \max_{i=1}^n |u_i-v_i| $$ Then we have $$ B_{r/n}^{(\rho)}(x)\subseteq B_r^{(m)}(x)\subseteq B_n^{(\rho)}(x) $$ > imagine two square capped a diamonds inside **Finally**, we will show that the topology generated by the square metric is the same as the product topology on $\mathbb{R}^n$. Recall the basis for the product topology on $\mathbb{R}^n$ with standard topology. $$ \mathcal{B}=\{(a_1,b_1)\times (a_2,b_2)\times \cdots \times (a_n,b_n)|a_i,b_i\in \mathbb{R},a_i #### Proposition of metric induced product topology Let $(X,d),(Y,d')$ be two metric spaces with metric topology $\mathcal{T},\mathcal{T}'$. On $X\times Y$, we can define a metric $\rho$ by $\rho((x,y),(x',y'))\coloneqq \max\{d(x,x'),d'(y,y')\}$, $(x,y),(x',y')\in X\times Y$. Then this metric topology on $X\times Y$ is the same as the product topology on $X\times Y$. > [!NOTE] > > Product of metrizable topological spaces is metrizable.