# CSE442T Introduction to Cryptography (Lecture 4) ## Recap Negligible function $\epsilon(n)$ if $\forall c>0,\exist N$ such that $n>N$, $\epsilon (n)<\frac{1}{n^c}$ Example: $\epsilon(n)=2^{-n},\epsilon(n)=\frac{1}{n^{\log (\log n)}}$ ## Chapter 2: Computational Hardness ### One-way function #### Strong One-Way Function 1. $\exists$ a P.P.T. that computes $f(x),\forall x\in\{0,1\}^n$ 2. $\forall \mathcal{A}$ adversaries, $\exists \epsilon(n),\forall n$. $$ P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]<\epsilon(n) $$ _That is, the probability of success guessing should decreasing (exponentially) as encrypted message increase (linearly)..._ To negate statement 2: $$ P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]=\mu(n) $$ is a negligible function. Negation: $\exists \mathcal{A}$, $P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]=\mu(n)$ is not a negligible function. That is, $\exists c>0,\forall N \exists n>N \epsilon(n)>\frac{1}{n^c}$ $\mu(n)>\frac{1}{n^c}$ for infinitely many $n$. or infinitely often. > Keep in mind: $P[success]=\frac{1}{n^c}$, it can try $O(n^c)$ times and have a good chance of succeeding at least once. #### Definition 28.4 (Weak one-way function) $f:\{0,1\}^n\to \{0,1\}^*$ 1. $\exists$ a P.P.T. that computes $f(x),\forall x\in\{0,1\}^n$ 2. $\forall \mathcal{A}$ adversaries, $\exists \epsilon(n),\forall n$. $$ P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]<1-\frac{1}{p(n)} $$ _The probability of success should not be too close to 1_ ### Probability #### Useful bound $0 Proof 1. Since $\exist P.P.T.$ that computes $f(x),\forall x$ we use this $q(n)$ polynomial times to compute $g$. 2. (Idea) $a$ has to succeed in inverting $f$ all $q(n)$ times. Since $x$ is a weak one-way, $\exists$ polynomial $p(n)$. $\forall q, P[q$ inverts $f]<1-\frac{1}{p(n)}$ (Here we use $<$ since we can always find a polynomial that works) Let $q(n)=np(n)$. Then $P[a$ inverting $g]\sim P[a$ inverts $f$ all $q(n)]$ times. $<(1-\frac{1}{p(n)})^{q(n)}=(1-\frac{1}{p(n)})^{np(n)}<(e^{-\frac{1}{p(n)}})^{np(n)}=e^{-n}$ which is negligible function. _we can always force the adversary to invert the weak one-way function for polynomial time to reach the property of strong one-way function_ Example: $(1-\frac{1}{n^2})^{n^3}