# Lecture 1 > I changed all the element in set to lowercase letters. I don't know why K is capitalized. ## Alice sending information to Bob Assuming _Eve_ can always listen Rule 1. Message, Encryption to Code and Decryption to original Message. ## Kerckhoffs' principle It states that the security of a cryptographic system shouldn't rely on the secrecy of the algorithm (Assuming Eve knows how everything works.) **Security is due to the security of the key.** ## Private key encryption scheme Let $\mathcal{M}$ be the set of message that Alice will send to Bob. (The message space) "plaintext" Let $\mathcal{K}$ be the set of key that will ever be used. (The key space) $Gen$ be the key generation algorithm. $k\gets Gen(\mathcal{K})$ $c\gets Enc_k(m)$ denotes cipher encryption. $m'\gets Dec_k(c')$ $m'$ might be null for incorrect $c'$. $Pr[K\gets \mathcal{K}:Dec_k(Enc_k(M))=m]=1$ The probability of decryption of encrypted message is original message is 1. *_in some cases we can allow the probailty not be 1_ ## Some examples of crypto system Let $\mathcal{M}=$ {all five letter strings}. And $\mathcal{K}=$ {1-$10^{10}$} Example: $P[k=k']=\frac{1}{10^{10}}$ $Enc_{1234567890}("brion")="brion1234567890"$ $Dec_{1234567890}(brion1234567890)="brion"$ Seems not very secure but valid crypto system. ## Early attempts for crypto system. ### Caesar cipher $\mathcal{M}=$ finite string of texts $\mathcal{K}=$ {1-26} $Enc_k=[(i+K)\% 26\ for\ i \in m]=c$ $Dec_k=[(i+26-K)\% 26\ for\ i \in c]$ ```python def caesar_cipher_enc(s: str, k:int): return ''.join([chr((ord(i)-ord('a')+k)%26+ord('a')) for i in s]) def caesar_cipher_dec(s: str, k:int): return ''.join([chr((ord(i)-ord('a')+26-k)%26+ord('a')) for i in s]) ``` ### Substitution cipher $\mathcal{M}=$ finite string of texts $\mathcal{K}=$ bijective linear transformations (for English alphabet, $|\mathcal{K}|=26!$) $Enc_k=[iK\ for\ i \in m]=c$ $Dec_k=[iK^{-1}\ for\ i \in c]$ Fails to frequency analysis ### Vigenere Cipher $\mathcal{M}=$ finite string of texts $\mathcal{K}=$ key phrase of a fixed length ```python def viginere_cipher_enc(s: str, k: List[int]): res='' n,m=len(s),len(k) j=0 for i in s: res+=caesar_cipher_enc(i,k[j]) j=(j+1)%m return res def viginere_cipher_dec(s: str, k: List[int]): res='' n,m=len(s),len(k) j=0 for i in s: res+=caesar_cipher_dec(i,k[j]) j=(j+1)%m return res ``` ### One time pad Completely random string, sufficiently long.