# Lecture 7 ## Letter choosing experiment For 100 letter tiles, $p_1,...,p_{27}$ (with oe blank) $(p_1)^2+\dots +(p_{27})^2\geq\frac{1}{27}$ For any $p_1,...,p_n$, $0\leq p_i\leq 1$. $\sum p_i=1$ $P[$the same event twice in a row$]=p_1^2+p_2^2....+p_n^2$ By Cauchy-Schwarz: $|u\cdot v|^2 \leq ||u||\cdot ||v||^2$. let $\vec{u}=(p_1,...,p_n)$, $\vec{v}=(1,..,1)$, so $(p_1^2+p_2^2....+p_n)^2\leq (p_1^2+p_2^2....+p_n^2)\cdot n$. So $p_1^2+p_2^2....+p_n^2\geq \frac{1}{n}$ So for an adversary $A$, who random choose $x'$ and output $f(x')=f(x)$ if matched. $P[f(x)=f(x')]\geq\frac{1}{|Y|}$ So $P[x\gets f(x);y=f(x):f(a(y,1^n))=y]\geq \frac{1}{|Y|}$ ## Modular arithmetic For $a,b\in \mathbb{Z}$, $N\in \mathbb{Z}^2$ $a\equiv b \mod N\iff N|(a-b)\iff \exists k\in \mathbb{Z}, a-b=kN,a=kN+b$ Ex: $N=23$, $-20\equiv 3\equiv 26\equiv 49\equiv 72\mod 23$. ### Equivalent relations for any $N$ on $\mathbb{Z}$ $a\equiv a\mod N$ $a\equiv b\mod N\iff b\equiv a\mod N$ $a\equiv b\mod N$ and $b\equiv c\mod N\implies a\equiv c\mod N$ ### Division Theorem For any $a\in \mathbb{Z}$, and $N\in\mathbb{Z}^+$, $\exists unique\ r,0\leq rb>0)$ $gcd(a,b)=gcd(b,a\mod b)$ ```python def euclidean_algorithm(a,b): if ab_3$, and $q_2$ in worst case is $1$, so $b_3<\frac{b_1}{2}$ $T(n)=2\Theta(\log b)=O(\log n)$ (linear in size of bits input)