# Lecture 8 ## Review Let $(X,d)$ be a metric space. Recall that $B_r(x)=\{z\in X:d(x,z)0$, $B_r(p)=\{q\in X:d(p,q)0$, $(B_s(p)\cap E)\backslash \{p\}\neq \phi$ 3. If $p\in E$ and $p$ is not a limit point of $E$, then $p$ is called an **isolated point** of $E$. 4. $E$ is **closed** if $E'\subset E$ 5. $p$ is a **interior point** of $E(p\in E^{\circ})$ if $\exists r>0$ such that $B_r(p)\subset E$. ## New materials ### Metric space #### Theorem 2.20 $p\in E'\implies \forall r>0,B_r(p)\cap E$ is infinite.
Proof We will prove the contrapositive. want to prove $\exists r>0$ such that $B_r(p)\cap E$ is finite $\implies p\notin E'$ ($\exists s>0$ such that $(B_s(p)\cap E)\backslash \{p\}=\phi$) Suppose $\exists r>0$ such that $B_r(p)\cap E$ is finite let $B_s(p)\cap E)\backslash \{p\}={q_1,...,q_n}$ - If $n=0$, then $B_s(p)\cap E)\backslash \{p\}=\phi$, so $p\in E'$ - If $n\geq 1$, then let $s=min\{d(p,q_m):1\leq m\leq n\}$ Each $d(p,q_m)$ is positive and the set is finite, so $s>0$. Then $(B_s(p)\cap E)\backslash \{p\}=\phi$, so $p\notin E$
#### Theorem 2.22 De Morgan's law $$ \left(\bigcup_a E_a\right)^c=\bigcap_a(E^c_a) $$ $E^c=X\backslash E$ Proof: $x\in \cup_{a\in A} E_x\iff \exists a\in A$ such that $x\in E_a$ So $x\in \left(\bigcup_a E_a\right)^c\iff \forall a\in A, x\notin E_a\iff \forall a\in A,x\in E_a^c\iff \bigcap_a(E^c_a)$ #### Theorem 2.23 $E$ is open $\iff$ $E^c$ is closed. > Warning: $E$ is open $\cancel{\iff}$ $E$ is closed. > $E$ is closed $\cancel{\iff}$ $E$ is open. > > Example: >$\phi$, $\R$ is both open and closed. "clopen set" >$[0,1)$ is not open and not closed. bad...
Proof $\impliedby$ Suppose $E^c$ is closed. Let $x\in E$, so $x\notin E^c$ $E^c$ is closed and $x\notin E^c\implies x\notin (E^c)'\implies \exists r >0$ such that $(B_r(x)\cap E^c)\backslash \{x\}=\phi$ So $\phi=(B_r(x)\cap E^c)\backslash \{x\}=B_r(x)\cap E^c$ So $B_r(x)\in E$ $\implies$ Suppose $E$ is open $$ \begin{aligned} x\in (E^c)'&\implies \forall r>0, (B_r(x)\cap E^c)\backslash \{x\}\neq \phi\\ &\implies \forall r>0, (B_r(x)\cap E^c)\neq \phi\\ &\implies \forall r>0, B-r(x)\notin E\\ &\implies x\notin E^{\circ}\\ &\implies x\notin E\\ &\implies x\in E^c \end{aligned} $$ So $(E^c)'\subset E^c$
#### Theorem 2.24 ##### An arbitrary union of open sets is open
Proof Suppose $\forall \alpha, G_\alpha$ is open. Let $x\in \bigcup _{\alpha} G_\alpha$. Then $\exists \alpha_0$ such that $x\in G_{\alpha_0}$. Since $G_{\alpha_0}$ is open, $\exists r>0$ such that $B_r(x)\subset G_{\alpha_0}$ Then $B_r(x)\subset G_{\alpha_0}\subset \bigcup_{\alpha} G_\alpha$
##### A finite intersection of open set is open
Proof Suppose $\forall i\in \{1,...,n\}$, $G_i$ is open. Let $x\in \bigcap^n_{i=1}G_i$, then $\forall i\in \{1,..,n\}$ and $G_i$ is open, so $\exists r_i>0$, such that $B_{r_i}(x)\subset G_i$ Let $r=min\{r_1,...,r_n\}$. Then $\forall i\in \{1,...,n\}$. $B_r(x)\subset B_{r_i}(x)\subset G_i$. So $B_r(x)\subset \bigcup_{i=1}^n G_i$
The other two can be proved by **Theorem 2.22,2.23** #### Definition 2.26 The closure $\bar{E}=E\cup E'$ Remark: Using the definition of $E'$, we have, $\bar{E}=\{p\in X,\forall r>0,B_r(p)\cap E\neq \phi\}$ #### Definition 2.27 $\bar {E}$ is closed.
Proof We will show $\bar{E}^c$ is open. Suppose $p\in \bar{E}^c$. Then by remark, $\exists r>0$ such that $B_r(p)\cap E=\phi$ (a) Furthermore,, we claim $B_r(p)\cap E'=\phi$ (b) Suppose for contradiction that $\exists q\in B_r(p)\cap E'$ By **Theorem 2.19**, $\exists s>0$ such that $B_s(q)\subset B_r(p)$ Since $q\in E',(B_s(q)\cap E)\backslash \{q\}\neq \phi$. This implies $B_r(p)\cap E=\phi$, which contradicts with (a) This proves (b) So $\bar{E}^c$ is open