# Math4501 Lecture 3 ## Review from last lecture ### Bisection method for finding root P1. Let $f$ be a continuous function on $[a,b]\to \mathbb{R}$, find $\xi \in [a,b]$ such that $f(\xi)=0$. P2. Let $g$ be a continuous function on $[a,b]\to \mathbb{R}$, find $\xi \in [a,b]$ such that $g(\xi)=\xi$. #### Theorem 1: solution to P1 exists if $f(a)f(b)<0$. #### Theorem 2: Fixed point theorem: If solution to P2 exists, then $g:[a,b]\to [a,b]$. #### Bijection method Obtain two sequence $(a_n)_{n=1}^\infty$ and $(b_n)_{n=1}^\infty$. Initially, we set $a_0=a$ and $b_0=b$. If $|a_n-b_n|<2^{-n}|a_0-b_0|$, then $a_n$ and $b_n$ are Cauchy sequence. So their limit exists. $\lim_{n\to\infty} a_n=\lim_{n\to\infty} b_n=\xi$. ### Simple iteration method #### Definition of Simple Iteration Given $x_0\in [a,b]$, we define a sequence $(x_n)_{n=0}^\infty$ by $$ x_{n+1}=g(x_n) $$ If a simple iteration converges, the it converges to a fixed point of
Proof Let $c\coloneqq \lim_{n\to\infty} x_n=g(c)$. $g:[a,b]\to \mathbb{R}$ is continuous if and only if $g$ is continuous at $x_0\in [a,b]$.
#### Definition of Lipschitz continuous A function $g:[a,b]\to \mathbb{R}$ is Lipschitz continuous if for all $x,y\in [a,b]$, there exists a constant $L>0$ such that $$ |g(x)-g(y)|\leq L|x-y| $$ for some $L>0$. > [!NOTE] > > Lipschitz continuous is a stronger condition than continuous. > > If a function is Lipschitz continuous, then it is continuous. > > However, the converse is not true. #### Definition of contraction mapping A function $g:[a,b]\to \mathbb{R}$ is a contraction mapping if it is Lipschitz continuous with $L<1$. #### Theorem of simple iteration Let $g:[a,b]\to [a,b]$ is a contraction mapping (Lipschitz continuous with $L<1$, with pointwise ontinuous $g$). Then - $g$ has a unique fixed point $\xi \in [a,b]$ - Simple iteration $x_{n+1}=g(x_n)$ converges to $\xi$ for any $x_0\in [a,b]$.
Proof **Uniqueness**: Suppose $\xi_1$ and $\xi_2$ are two fixed points of $g$. Then $|x_1-x_2|=|g(\xi_1)-g(\xi_2)|\leq L|\xi_1-\xi_2|$. Thus, $(1-L)|\xi_1-\xi_2|\leq 0$, which implies $|\xi_1-\xi_2|=0$. A more general result: Brouwer's fixed point theorem **Convergence**: Let $\xi\in [a,b]$ be the unique fixed point of $g$. Then, $$ \begin{aligned} |x_n-\xi|&=|g(x_{n-1})-g(\xi)|\\ &\leq L|x_{n-1}-\xi|\\ &=L|g(x_{n-2})-g(\xi)|\\ &\leq L^2|x_{n-2}-\xi|\\ &\vdots\\ &\leq L^n|x_0-\xi| $$ Thus, we can always find $N$ such that $L^N|x_0-\xi|<\epsilon$ for any $\epsilon>0$. Choose $N=\log(\frac{\epsilon}{|x_0-\xi|})/\log(L)$. Therefore, $x_n$ converges to $\xi$.